Effects of feedstock biopolymer compositions on the physiochemical characteristics of dissolved black carbon from lignocellulose-based biochar

被引:42
作者
Han, Lu [1 ]
Nie, Xiang [1 ]
Wei, Jing [2 ]
Gu, Mingyue [3 ]
Wu, Wenpei [1 ,4 ]
Chen, Mengfang [1 ,4 ]
机构
[1] Chinese Acad Sci, Inst Soil Sci, Key Lab Soil Environm & Pollut Remediat, Nanjing 210008, Peoples R China
[2] Chinese Acad Sci, Yantai Inst Coastal Zone Res, Key Lab Coastal Environm Proc & Ecol Remediat, Yantai 264003, Peoples R China
[3] Nanjing Kaiye Environm Technol Co Ltd, 8 Yuanhua Rd,Innovat Bldg 106,Nanjing Univ Sci Pk, Nanjing 210034, Peoples R China
[4] Chinese Acad Sci, Inst Soil Sci, Jiangsu Engn Lab Soil & Groundwater Remediat Cont, Nanjing 210008, Peoples R China
基金
中国国家自然科学基金;
关键词
Biochar; Dissolved black carbon; Biopolymer compositions; Lignocellulose; ORGANIC-MATTER; FLUORESCENCE SPECTROSCOPY; HEAVY-METAL; PYROLYSIS; BEHAVIOR; SOIL; NANOPARTICLES; BIOMASS; LIGNIN; PLANT;
D O I
10.1016/j.scitotenv.2020.141491
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Dissolved black carbon (DBC) is becoming increasingly concerned by researchers due to its unique environmental behavior. However, understanding of the influencemechanism of biopolymer compositions of cellulose (CEL), hemicellulose (HEM) and lignin (LIG) on the formation and physiochemical characteristics of DBC from lignocellulose-based biochar is limited. This study therefore examined the formation of DBCs derived from the biopolymer compositions, corn straw (CS), corncob (CC), bamboo sawdust (BS) and pinewood sawdust (PS) under the heat treatment temperatures ( HTTs) of 300-500 degrees C. Zeta potential and hydrodynamic diameters (Dh) of DBCs produced under 300 degrees C were further investigated. DBC formation may be closely associated with the HTT-dependent heterogeneities of biopolymer compositions, in which significant effects of CEL and HEM charring on physiochemical properties of DBCs were identified under the HTT of 300 and 400 degrees C, while the formation of DBCs was closely related to LIG and its proportions in biomass under high HTT (>500 degrees C). On the rise of the HTT, the carbonaceous structures of biopolymer compositionswere reorganized and converted to graphitic structures in biochar accompanied by the large decomposition or carbonization of CEL and HEM, leading to the reduced carbon content, surface functional groups, aromaticity and molecular weight of DBCs, as well as the decrease of protein-like and relative increase of fulvic-like fluorescent substances in most DBCs. LIG in biomass may facilitate the migration of DBCs due to abundant surface negative charges and the formation of low Dh. This study offered newinsights into our understanding of influencingmechanisms of biopolymer compositions on the characteristic of DBCs under different HTTs. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 55 条
[1]   Influence of Dissolved Organic Matter on the Environmental Fate of Metals, Nanoparticles, and Colloids [J].
Aiken, George R. ;
Hsu-Kim, Heileen ;
Ryan, Joseph N. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (08) :3196-3201
[2]   Decomposition behavior of plant biomass in hot-compressed water [J].
Ando, H ;
Sakaki, T ;
Kokusho, T ;
Shibata, M ;
Uemura, Y ;
Hatate, Y .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2000, 39 (10) :3688-3693
[3]   Discrimination of Farm Waste Contamination by Fluorescence Spectroscopy Coupled with Multivariate Analysis during a Biodegradation Study [J].
Bilal, Muhammad ;
Jaffrezic, Anne ;
Dudal, Yves ;
Le Guillou, Cedric ;
Menasseri, Safya ;
Walter, Christian .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2010, 58 (05) :3093-3100
[4]   Pyrolysis behavior of rice straw under carbon dioxide for production of bio-oil [J].
Biswas, Bijoy ;
Singh, Rawel ;
Kumar, Jitendra ;
Singh, Raghuvir ;
Gupta, Piyush ;
Krishna, Bhavya B. ;
Bhaskar, Thallada .
RENEWABLE ENERGY, 2018, 129 :686-694
[5]   Lignin valorization for the production of renewable chemicals: State-of-the-art review and future prospects [J].
Cao, Leichang ;
Yu, Iris K. M. ;
Liu, Yaoyu ;
Ruan, Xiuxiu ;
Tsang, Daniel C. W. ;
Hunt, Andrew J. ;
Ok, Yong Sik ;
Song, Hocheol ;
Zhang, Shicheng .
BIORESOURCE TECHNOLOGY, 2018, 269 :465-475
[6]   Spectroscopic characterization of the structural and functional properties of natural organic matter fractions [J].
Chen, J ;
Gu, BH ;
LeBoeuf, EJ ;
Pan, HJ ;
Dai, S .
CHEMOSPHERE, 2002, 48 (01) :59-68
[7]   Contrasting effects of biochar nanoparticles on the retention and transport of phosphorus in acidic and alkaline soils [J].
Chen, Ming ;
Alim, Nurguzal ;
Zhang, Yitao ;
Xu, Nan ;
Cao, Xinde .
ENVIRONMENTAL POLLUTION, 2018, 239 :562-570
[8]   Transport and retention of biochar nanoparticles in a paddy soil under environmentally-relevant solution chemistry conditions [J].
Chen, Ming ;
Wang, Dengjun ;
Yang, Fan ;
Xu, Xiaoyun ;
Xu, Nan ;
Cao, Xinde .
ENVIRONMENTAL POLLUTION, 2017, 230 :540-549
[9]   FTIR and Synchronous Fluorescence Heterospectral Two-Dimensional Correlation Analyses on the Binding Characteristics of Copper onto Dissolved Organic Matter [J].
Chen, Wei ;
Habibul, Nuzahat ;
Liu, Xiao-Yang ;
Sheng, Guo-Ping ;
Yu, Han-Qing .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (04) :2052-2058
[10]   Charcoal Volatile Matter Content Influences Plant Growth and Soil Nitrogen Transformations [J].
Deenik, Jonathan L. ;
McClellan, Tai ;
Uehara, Goro ;
Antal, Michael J., Jr. ;
Campbell, Sonia .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2010, 74 (04) :1259-1270