Trapped charge mapping in crystalline organic transistors by using scanning Kelvin probe force microscopy

被引:13
|
作者
Ando, Masahiko [1 ]
Heike, Seiji [2 ]
Kawasaki, Masahiro [3 ]
Hashizume, Tomihiro [2 ,4 ]
机构
[1] Hitachi Ltd, Cent Res Lab, Hitachi, Ibaraki 3121292, Japan
[2] Hitachi Ltd, Cent Res Lab, Hatoyama, Saitama 3500395, Japan
[3] Hitachi Ltd, Hitachi Res Lab, Hitachi, Ibaraki 3121292, Japan
[4] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan
关键词
THIN-FILM TRANSISTORS; FIELD-EFFECT TRANSISTORS; PENTACENE; TIME;
D O I
10.1063/1.4901946
中图分类号
O59 [应用物理学];
学科分类号
摘要
Trapped charge distributions at the interfaces between gate insulators and crystalline organic semiconductors in thin-film transistors are visualized by using a technique based on scanning Kelvin probe force microscopy (SKFM). For the charge density measurement, an ac voltage is applied to the gate electrode and its amplitude is adjusted so as to keep the electrostatic force constant between the SKFM tip and the semiconductor surface. The trapped charge density shows characteristic spatial distributions in the channel region, which varies by voltage stresses applied to the transistors. By comparing the charge distributions with the surface-potential profiles, trap mechanisms are discussed. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] High-speed mapping of surface charge dynamics using sparse scanning Kelvin probe force microscopy
    Checa, Marti
    Fuhr, Addis S.
    Sun, Changhyo
    Vasudevan, Rama
    Ziatdinov, Maxim
    Ivanov, Ilia
    Yun, Seok Joon
    Xiao, Kai
    Sehirlioglu, Alp
    Kim, Yunseok
    Sharma, Pankaj
    Kelley, Kyle P.
    Domingo, Neus
    Jesse, Stephen
    Collins, Liam
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [2] High-speed mapping of surface charge dynamics using sparse scanning Kelvin probe force microscopy
    Marti Checa
    Addis S. Fuhr
    Changhyo Sun
    Rama Vasudevan
    Maxim Ziatdinov
    Ilia Ivanov
    Seok Joon Yun
    Kai Xiao
    Alp Sehirlioglu
    Yunseok Kim
    Pankaj Sharma
    Kyle P. Kelley
    Neus Domingo
    Stephen Jesse
    Liam Collins
    Nature Communications, 14
  • [3] AC Kelvin Probe Force Microscopy Enables Charge Mapping in Water
    Hackl, Thomas
    Schitter, Georg
    Mesquida, Patrick
    ACS NANO, 2022, 16 (11) : 17982 - 17990
  • [4] Probing stress effects in single crystal organic transistors by scanning Kelvin probe microscopy
    Teague, Lucile C.
    Jurchescu, Oana D.
    Richter, Curt A.
    Subramanian, Sankar
    Anthony, John E.
    Jackson, Thomas N.
    Gundlach, David J.
    Kushmerick, James G.
    APPLIED PHYSICS LETTERS, 2010, 96 (20)
  • [5] Charge erasure analysis on the nanoscale using Kelvin probe force microscopy
    Lin, Shi-quan
    Shao, Tian-min
    AIP ADVANCES, 2017, 7 (07):
  • [6] Localized charge imaging with scanning Kelvin probe microscopy
    Orihuela, M. F.
    Somoza, A. M.
    Colchero, J.
    Ortuno, M.
    Palacios-Lidon, E.
    NANOTECHNOLOGY, 2017, 28 (02)
  • [7] Space Charge Measurements with Kelvin Probe Force Microscopy
    Faliya, Kapil
    Kliem, Herbert
    Dias, Carlos J.
    IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2017, 24 (03) : 1913 - 1922
  • [8] Photoinduced Degradation Studies of Organic Solar Cell Materials Using Kelvin Probe Force and Conductive Scanning Force Microscopy
    Sengupta, Esha
    Domanski, Anna L.
    Weber, Stefan A. L.
    Untch, Maria B.
    Butt, Hans-Juergen
    Sauermann, Tobias
    Egelhaaf, Hans J.
    Berger, Ruediger
    JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (40): : 19994 - 20001
  • [9] Delamination of organic coating on carbon steel studied by scanning Kelvin probe force microscopy
    Pan, Tongyan
    SURFACE AND INTERFACE ANALYSIS, 2013, 45 (06) : 978 - 984
  • [10] High-resolution Kelvin probe microscopy in corrosion science: Scanning Kelvin probe force microscopy (SKPFM) versus classical scanning Kelvin probe (SKP)
    Rohwerder, Michael
    Turcu, Florin
    ELECTROCHIMICA ACTA, 2007, 53 (02) : 290 - 299