Fractional telegraph-type equations and hyperbolic Brownian motion

被引:6
作者
D'Ovidio, Mirko [1 ]
Orsingher, Enzo [2 ]
Toaldo, Bruno [2 ]
机构
[1] Univ Roma La Sapienza, Dept Basic & Appl Sci Engn, Rome, Italy
[2] Univ Roma La Sapienza, Dept Stat Sci, Rome, Italy
关键词
Riemann-Liouville fractional calculus; Hyperbolic Brownian motion; Telegraph processes; Subordinators; Time-changed processes; Hyperbolic Laplacian;
D O I
10.1016/j.spl.2014.02.021
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper is devoted to the interplay between time-fractional telegraph-type equations and processes defined on the n-dimensional Poincare half-space W. We solve such equations and show that the solutions coincide with the law of the composition of a hyperbolic Brownian motion with the inverse of the sum of two independent stable subordinators. In the case n = 3, we obtain the explicit form of the solution of the above equation. (c) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:131 / 137
页数:7
相关论文
共 9 条
[1]  
[Anonymous], 2006, Journal of the Electrochemical Society
[2]  
D'Ovidio M., 2012, ARXIV12062511
[3]  
Debiard A., 1976, THEOREMES COMPARISON, V12, P391
[4]  
GERTSENSHTEIN ME, 1959, TEOR VEROYA PRIMEN, V4, P424
[5]  
Getoor R.K., 1961, PAC J MATH, V11, P128
[6]  
GRUET JC, 1996, STOCHASTICS STOCHAST, V56, P53
[7]  
KARPELEVICH FI, 1959, TEOR VEROYA PRIMEN, V4, P432
[8]  
Lao L., 2007, STOCHASTICS, V79, P505, DOI DOI 10.1080/17442500701433509
[9]   Exponential functionals of Brownian motion, I: Probability laws at fixed time [J].
Matsumoto, Hiroyuki .
PROBABILITY SURVEYS, 2005, 2 :312-347