Ruthenium(0) nanoparticles supported on xonotlite nanowire: a long-lived catalyst for hydrolytic dehydrogenation of ammonia-borane

被引:61
作者
Akbayrak, Serdar [1 ]
Ozkar, Saim [1 ]
机构
[1] Middle E Tech Univ, Dept Chem, TR-06800 Ankara, Turkey
关键词
METAL NANOCLUSTER FORMATION; CAPACITY HYDROGEN STORAGE; PALLADIUM(0) NANOCLUSTERS; REUSABLE CATALYST; FACILE SYNTHESIS; STABILIZED RUTHENIUM(0); ZEOLITE FRAMEWORK; ROOM-TEMPERATURE; GENERATION; EFFICIENT;
D O I
10.1039/c3dt52701h
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Ruthenium(0) nanoparticles supported on xonotlite nanowire (Ru(0)@X-NW) were prepared by the ion exchange of Ru3+ ions with Ca2+ ions in the lattice of xonotlite nanowire followed by their reduction with sodium borohydride in aqueous solution at room temperature. Ru(0)@X-NW were characterized by a combination of advanced analytical techniques. The results show that (i) highly dispersed ruthenium(0) nanoparticles of 4.4 +/- 0.4 nm size were formed on the surface of xonotlite nanowire, (ii) Ru(0)@X-NW show high catalytic activity in hydrogen generation from the hydrolytic dehydrogenation of ammonia borane with a turnover frequency value up to 135 min(-1) at 25.0 +/- 0.1 degrees C. (iii) They provide unprecedented catalytic life time (TTO = 134,100) for hydrogen generation from the hydrolysis of ammonia borane at 25.0 +/- 0.1 degrees C. (iv) The results of a kinetic study on the hydrogen generation from the hydrolysis of ammonia borane were also reported including the activation energy of 77 +/- 2 kJ mol(-1) for this reaction.
引用
收藏
页码:1797 / 1805
页数:9
相关论文
共 60 条
[1]   Insulated pressure vessels for hydrogen storage on vehicles [J].
Aceves, SM ;
Berry, GD ;
Rambach, GD .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1998, 23 (07) :583-591
[2]   Hydroxyapatite supported ruthenium(0) nanoparticles catalyst in hydrolytic dehydrogenation of ammonia borane: Insight to the nanoparticles formation and hydrogen evolution kinetics [J].
Akbayrak, Serdar ;
Erdek, Pelin ;
Ozkar, Saim .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2013, 142 :187-195
[3]   Ruthenium(0) Nanoparticles Supported on Multiwalled Carbon Nanotube As Highly Active Catalyst for Hydrogen Generation from Ammonia-Borane [J].
Akbayrak, Serdar ;
Ozkar, Saim .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (11) :6302-6310
[4]   Green approach for the large-scale synthesis of metal/metal oxide nanoparticle decorated multiwalled carbon nanotubes [J].
Baro, Mridula ;
Nayak, Pranati ;
Baby, Tessy Theres ;
Ramaprabhu, S. .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (03) :482-486
[5]   Chemical kinetics of Ru-catalyzed ammonia borane hydrolysis [J].
Basu, S. ;
Brockman, A. ;
Gagare, P. ;
Zheng, Y. ;
Ramachandran, P. V. ;
Delgass, W. N. ;
Gore, J. P. .
JOURNAL OF POWER SOURCES, 2009, 188 (01) :238-243
[6]   Amineborane-based chemical hydrogen storage: Enhanced ammonia borane dehydrogenation in ionic liquids [J].
Bluhm, Martin E. ;
Bradley, Mark G. ;
Butterick, Robert, III ;
Kusari, Upal ;
Sneddon, Larry G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (24) :7748-7749
[7]   A facile synthesis of nearly monodisperse ruthenium nanoparticles and their catalysis in the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage [J].
Can, Hasan ;
Metin, Onder .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2012, 125 :304-310
[8]   Room temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts [J].
Chandra, Manish ;
Xu, Qiang .
JOURNAL OF POWER SOURCES, 2007, 168 (01) :135-142
[9]   Synthesis of supported metal nanoparticle catalysts using ligand assisted methods [J].
Costa, Natalia J. S. ;
Rossi, Liane M. .
NANOSCALE, 2012, 4 (19) :5826-5834
[10]   Water soluble laurate-stabilized ruthenium(0) nanoclusters catalyst for hydrogen generation from the hydrolysis of ammonia-borane: High activity and long lifetime [J].
Durap, Feyyaz ;
Zahmakiran, Mehmet ;
Ozkar, Saim .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (17) :7223-7230