Bayesian inference for partially observed stochastic differential equations driven by fractional Brownian motion

被引:12
作者
Beskos, A. [1 ]
Dureau, J. [2 ]
Kalogeropoulos, K. [2 ]
机构
[1] UCL, Dept Stat Sci, London WC1E 7HB, England
[2] London Sch Econ, Dept Stat, London WC2A 2AE, England
基金
英国工程与自然科学研究理事会;
关键词
Bayesian inference; Davies and Harte algorithm; Fractional Brownian motion; Hybrid Monte Carlo algorithm; HYBRID MONTE-CARLO; LONG-MEMORY; MCMC METHODS; VOLATILITY; PERSISTENCE;
D O I
10.1093/biomet/asv051
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider continuous-time diffusion models driven by fractional Brownian motion. Observations are assumed to possess a nontrivial likelihood given the latent path. Due to the non-Markovian and high-dimensional nature of the latent path, estimating posterior expectations is computationally challenging. We present a reparameterization framework based on the Davies and Harte method for sampling stationary Gaussian processes and use it to construct a Markov chain Monte Carlo algorithm that allows computationally efficient Bayesian inference. The algorithm is based on a version of hybrid Monte Carlo simulation that delivers increased efficiency when used on the high-dimensional latent variables arising in this context. We specify the methodology on a stochastic volatility model, allowing for memory in the volatility increments through a fractional specification. The method is demonstrated on simulated data and on the S&P 500/VIX time series. In the latter case, the posterior distribution favours values of the Hurst parameter smaller than 1/2, pointing towards medium-range dependence.
引用
收藏
页码:809 / 827
页数:19
相关论文
共 36 条
[1]   Maximum likelihood estimation of stochastic volatility models [J].
Ait-Sahalia, Yacine ;
Kimmel, Robert .
JOURNAL OF FINANCIAL ECONOMICS, 2007, 83 (02) :413-452
[2]   Particle Markov chain Monte Carlo methods [J].
Andrieu, Christophe ;
Doucet, Arnaud ;
Holenstein, Roman .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 :269-342
[3]   Hybrid Monte Carlo on Hilbert spaces [J].
Beskos, A. ;
Pinski, F. J. ;
Sanz-Serna, J. M. ;
Stuart, A. M. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (10) :2201-2230
[4]   Optimal tuning of the hybrid Monte Carlo algorithm [J].
Beskos, Alexandros ;
Pillai, Natesh ;
Roberts, Gareth ;
Sanz-Serna, Jesus-Maria ;
Stuart, Andrew .
BERNOULLI, 2013, 19 (5A) :1501-1534
[5]   Advanced MCMC methods for sampling on diffusion pathspace [J].
Beskos, Alexandros ;
Kalogeropoulos, Konstantinos ;
Pazos, Erik .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (04) :1415-1453
[6]  
Biagini F., 2008, STOCHASTIC CALCULUS
[7]   The detection and estimation of long memory in stochastic volatility [J].
Breidt, FJ ;
Crato, N ;
de Lima, P .
JOURNAL OF ECONOMETRICS, 1998, 83 (1-2) :325-348
[8]   Estimation and pricing under long-memory stochastic volatility [J].
Chronopoulou A. ;
Viens F.G. .
Annals of Finance, 2012, 8 (2-3) :379-403
[9]   Stochastic volatility and option pricing with long-memory in discrete and continuous time [J].
Chronopoulou, Alexandra ;
Viens, Frederi G. .
QUANTITATIVE FINANCE, 2012, 12 (04) :635-649
[10]   Affine fractional stochastic volatility models [J].
F. Comte ;
L. Coutin ;
E. Renault .
Annals of Finance, 2012, 8 (2-3) :337-378