Quantum error correcting codes from the compression formalism

被引:68
作者
Choi, Man-Duen [1 ]
Kribs, David W.
Zyczkowski, Karol
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[2] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
[3] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[4] Perimeter Inst Theoret Phys, Waterloo, ON N2L 3Y5, Canada
[5] Jagiellonian Univ, Inst Phys, PL-30059 Krakow, Poland
[6] Polish Acad Sci, Ctr Theoret Phys, PL-02668 Warsaw, Poland
基金
加拿大自然科学与工程研究理事会;
关键词
quantum error correction; noisy quantum channels; algebraic compression; numerical range;
D O I
10.1016/S0034-4877(06)80041-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We solve the fundamental quantum error correction problem for bi-unitary channels on two-qubit Hilbert space. By solving an algebraic compression problem, we construct qubit codes for such channels on arbitrary dimension Hilbert space, and identify correctable codes for Pauli-error models not obtained by the stabilizer formalism. This is accomplished through an application of a new tool for error correction in quantum computing called the "higher-rank numerical range". We describe its basic proper-ties and discuss possible further applications.
引用
收藏
页码:77 / 91
页数:15
相关论文
共 23 条
[1]  
AHARONOV D, ARXIVORGQUANTPH99061
[2]  
Alicki R., 2007, Volume 717 of Lecture Notes in Physics, V717
[3]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[4]   Quantum-error correction and orthogonal geometry [J].
Calderbank, AR ;
Rains, EM ;
Shor, PW ;
Sloane, NJA .
PHYSICAL REVIEW LETTERS, 1997, 78 (03) :405-408
[5]  
Choi M.J., UNPUB
[6]   COMPLETELY POSITIVE LINEAR MAPS ON COMPLEX MATRICES [J].
CHOI, MD .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 10 (03) :285-290
[7]  
CHOI MD, IN PRESS LIN ALG APP
[8]   Class of quantum error-correcting codes saturating the quantum Hamming hound [J].
Gottesman, D .
PHYSICAL REVIEW A, 1996, 54 (03) :1862-1868
[9]  
GOTTESMAN D, ARXIVORGQUANTPH05071
[10]  
Gottesman D., 1997, THESIS CALTECH PASAD