Fabrication of novel visible-light-driven AgI/g-C3N4 composites with enhanced visible-light photocatalytic activity for diclofenac degradation

被引:104
|
作者
Zhang, Wei [1 ]
Zhou, Li [1 ]
Shi, Jun [1 ]
Deng, Huiping [1 ]
机构
[1] Tongji Univ, Coll Environm Sci & Engn, Shanghai 200092, Peoples R China
关键词
G-C3N4; AgI; Heterojunction; Visible light photocatalysis; Diclofenac; TROUT ONCORHYNCHUS-MYKISS; HIGHLY EFFICIENT; DRUG DICLOFENAC; RAINBOW-TROUT; HETEROJUNCTION PHOTOCATALYST; PHOTOGENERATED CARRIERS; ADVANCED OXIDATION; Z-SCHEME; G-C3N4; WATER;
D O I
10.1016/j.jcis.2017.02.022
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A visible-light-driven heterostructured AgI/g-C3N4 was prepared by a deposition-precipitation method. The composition, structure, morphology, and optical properties of the photocatalyst were characterized by Brunauer-Emmett-Teller method (BET), X-ray powder diffraction (XRD), Fourier transform-infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), scanning electron microscope (SEM), UV-vis diffused reflectance spectroscopy (DRS), photoluminescence spectroscopy (PL), photocurrent, and electrochemical impedance spectroscopy (EIS), respectively. AgI/g-C3N4 composite photocatalysts exhibited higher photocatalytic activities than those of Agl nanoparticles and g-C3N4 in the degradation of diclofenac (a model anti-inflammatory medicine) under visible light irradiation (X. > 400 nm). When the mass molar ratio of AgI was 45% in AgI/g-C3N4, the reaction rate constant of diclofenac degradation reached 0.561 min(-1), which was almost 12.5 and 43.2 times higher than that achieved by AgI (0.045 min(-1)) and g-C3N4 (0.013 min(-1)). The h(+) and O-2(-) were pinpointed as the main reactive species in the photocatalytic reaction using their obligate radical scavengers. Diclofenac was. completely degraded and partly mineralized during the photodegradation. The main intermediates were determined by liquid chromatograph mass spectrometer (LC-MS), and toxicological assessments were carried out to evaluate the change of toxicity in the degradation process. In addition, the photocatalysts showed excellent stability over multiple reaction cycles. Finally, a possible photocatalytic and charge separation mechanism was proposed. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:167 / 176
页数:10
相关论文
共 50 条
  • [31] SnO2/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity
    Rong Yin
    Qingzhi Luo
    Desong Wang
    Haitao Sun
    Yuanyuan Li
    Xueyan Li
    Jing An
    Journal of Materials Science, 2014, 49 : 6067 - 6073
  • [32] Synthesis of g-C3N4/CuS Heterojunction with Enhanced Photocatalytic Activity Under Visible-Light
    Wang, Fan
    Zeng, Qingru
    Tang, Jinping
    Peng, Liang
    Shao, Jihai
    Luo, Si
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2020, 20 (09) : 5896 - 5905
  • [33] AgBr/g-C3N4 nanocomposites for enhanced visible-light-driven photocatalytic inactivation of Escherichia coli
    Zhan, Sihui
    Hou, Qianlei
    Li, Yi
    Ma, Shuanglong
    Wang, Pengfei
    Li, Yanan
    Wang, Haitao
    RSC ADVANCES, 2018, 8 (60) : 34428 - 34436
  • [34] Enhanced visible-light-driven photocatalytic activity of Ag2WO4/g-C3N4 heterojunction photocatalysts for tetracycline degradation
    Shi, Yu
    Tang, Yu-bin
    Chen, Fang-yan
    Shi, Wei-long
    Guo, Feng
    Wang, Xin-gang
    DESALINATION AND WATER TREATMENT, 2019, 170 : 287 - 296
  • [35] Visible-light-driven Activation of Persulfate by RGO/g-C3N4 Composites for Degradation of BPA in Wastewater
    Zhang Sai
    Zou Yingtong
    Chen Zhongshen
    Li Bingfeng
    Gu Pengcheng
    Wen Tao
    JOURNAL OF INORGANIC MATERIALS, 2020, 35 (03) : 329 - 336
  • [36] A novel synthesis method for Ag/g-C3N4 nanocomposite and mechanism of enhanced visible-light photocatalytic activity
    Jinbo Xue
    Tao Ma
    Qianqian Shen
    Rongfeng Guan
    Husheng Jia
    Xuguang Liu
    Bingshe Xu
    Journal of Materials Science: Materials in Electronics, 2019, 30 : 15636 - 15645
  • [37] Highly efficient visible-light photocatalytic performance based on novel AgI/g-C3N4 composite photocatalysts
    Lei, Chunsheng
    Pi, Meng
    Zhu, Xiaofeng
    Xia, Pengfei
    Guo, Yingqing
    Zhang, Fenge
    CHEMICAL PHYSICS LETTERS, 2016, 664 : 167 - 172
  • [38] A novel synthesis method for Ag/g-C3N4 nanocomposite and mechanism of enhanced visible-light photocatalytic activity
    Xue, Jinbo
    Ma, Tao
    Shen, Qianqian
    Guan, Rongfeng
    Jia, Husheng
    Liu, Xuguang
    Xu, Bingshe
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2019, 30 (16) : 15636 - 15645
  • [39] Synthesis and photocatalytic mechanism of visible-light-driven AgBr/g-C3N4 composite
    Jing Yang
    Xianqian Zhang
    Jieqing Long
    Chuanfang Xie
    Yongqian Wang
    Liang Wei
    Xiande Yang
    Journal of Materials Science: Materials in Electronics, 2021, 32 : 6158 - 6167
  • [40] Synthesis and photocatalytic mechanism of visible-light-driven AgBr/g-C3N4 composite
    Yang, Jing
    Zhang, Xianqian
    Long, Jieqing
    Xie, Chuanfang
    Wang, Yongqian
    Wei, Liang
    Yang, Xiande
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2021, 32 (05) : 6158 - 6167