High performance Li2MnSiO4 prepared in molten KCl-NaCl for rechargeable lithium ion batteries

被引:28
作者
Wang, Fei [1 ]
Wang, Yanming [1 ]
Sun, Dengming [1 ]
Wang, Lei [1 ]
Yang, Jun [2 ]
Jia, Haiping [3 ]
机构
[1] Huaibei Normal Univ, Sch Chem & Mat Sci, Huaibei 235000, Anhui, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
[3] Univ Munster, Meet Battery Res Ctr, Inst Phys Chem, D-48149 Munster, Germany
关键词
Lithium ion battery; Molten salt method; Lithium manganese silicate; Cyclability; CATHODE MATERIAL; HIGH-CAPACITY; ELECTROCHEMICAL PERFORMANCE; SALT SYNTHESIS; FLUX METHOD; LI2MSIO4; M; NANOCOMPOSITE; CARBON; SPINEL; MN;
D O I
10.1016/j.electacta.2013.12.057
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Li2MnSiO4/C composites have been prepared by a facile molten salt method followed by a carbon coating process. Submicron Li2MnSiO4 particles are obtained in KCl-NaCl molten phase with a short reaction time of 3 h. The orthorhombic structure and sphere-like morphology are confirmed by X-ray diffraction and scanning electron microscope. Ex-situ XRD study confirms amorphous transition of Li2MnSiO4 during the first charge process. Galvanostatic charge-discharge tests display high initial charge and discharge capacities of 265 and 194 mAh g(-1), respectively, at 0.05 C rate for the Li2MnSiO4/C composite prepared at 700 degrees C. At 0.1 C rate, it maintains a discharge capacity of 165 mAh g(-1) and its capacity retention at the 50th cycle is up to 78%, showing superior cycling stability. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:131 / 137
页数:7
相关论文
共 37 条
[1]   Direct synthesis of novel homogeneous nanocomposites of Li2MnSiO4 and carbon as a potential Li-ion battery cathode material [J].
Aono, Shintaro ;
Tsurudo, Taisuke ;
Urita, Koki ;
Moriguchi, Isamu .
CHEMICAL COMMUNICATIONS, 2013, 49 (28) :2939-2941
[2]   Superior Lithium Storage Properties of Carbon Coated Li2MnSiO4 Cathodes [J].
Aravindan, V. ;
Karthikeyan, K. ;
Amaresh, S. ;
Lee, Y. S. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2011, 14 (04) :A33-A35
[3]   Adipic acid assisted sol-gel synthesis of Li2MnSiO4 nanoparticles with improved lithium storage properties [J].
Aravindan, V. ;
Karthikeyan, K. ;
Ravi, S. ;
Amaresh, S. ;
Kim, W. S. ;
Lee, Y. S. .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (35) :7340-7343
[4]   Structural and Electrochemical Characterization of Li2MnSiO4 Cathode Material [J].
Belharouak, Ilias ;
Abouimrane, A. ;
Amine, K. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (48) :20733-20737
[5]   In Situ Carbon Coated Li2MnSiO4/C Composites as Cathodes for Enhanced Performance Li-Ion Batteries [J].
Bhaskar, Akkisetty ;
Deepa, Melepurath ;
Rao, T. N. ;
Varadaraju, U. V. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (12) :A1954-A1960
[6]   Nano-sized LiMn2O4 spinel cathode materials exhibiting high rate discharge capability for lithium-ion batteries [J].
Chen, Yingchao ;
Xie, Kai ;
Pan, Yi ;
Zheng, Chunman .
JOURNAL OF POWER SOURCES, 2011, 196 (15) :6493-6497
[7]   Sol-gel derived nanostructured Li2MnSiO4/C cathode with high storage capacity [J].
Devaraj, S. ;
Kuezma, M. ;
Ng, C. T. ;
Balaya, P. .
ELECTROCHIMICA ACTA, 2013, 102 :290-298
[8]   Li2MSiO4 (M = Fe and/or Mn) cathode materials [J].
Dominko, R. .
JOURNAL OF POWER SOURCES, 2008, 184 (02) :462-468
[9]   Li2MnSiO4 as a potential Li-battery cathode material [J].
Dominko, R. ;
Bele, M. ;
Kokalj, A. ;
Gaberscek, M. ;
Jamnik, J. .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :457-461
[10]   Novel Pn Polymorph for Li2MnSiO4 and Its Electrochemical Activity As a Cathode Material in Li-Ion Batteries [J].
Duncan, Hugues ;
Kondamreddy, Abhinay ;
Mercier, Patrick H. J. ;
Le Page, Yvon ;
Abu-Lebdeh, Yaser ;
Couillard, Martin ;
Whitfield, Pamela S. ;
Davidson, Isobel J. .
CHEMISTRY OF MATERIALS, 2011, 23 (24) :5446-5456