A polynomial primal-dual affine scaling algorithm for symmetric conic optimization

被引:2
作者
Mohammad-Nezhad, Ali [1 ]
Terlaky, Tamas [1 ]
机构
[1] Lehigh Univ, Dept Ind & Syst Engn, Harold S Mohler Lab, 200 West Packer Ave, Bethlehem, PA 18015 USA
关键词
Interior-point method; Dikin-type affine scaling method; symmetric conic optimization; Euclidean Jordan algebra; INTERIOR-POINT METHODS; JORDAN ALGEBRAS; CONES; EXTENSION; SDPT3;
D O I
10.1007/s10589-016-9874-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The primal-dual Dikin-type affine scaling method was originally proposed for linear optimization and then extended to semidefinite optimization. Here, the method is generalized to symmetric conic optimization using the notion of Euclidean Jordan algebras. The method starts with an interior feasible but not necessarily centered primal-dual solution, and it features both centering and reducing the duality gap simultaneously. The method's iteration complexity bound is analogous to the semidefinite optimization case. Numerical experiments demonstrate that the method is viable and robust when compared to SeDuMi, MOSEK and SDPT3.
引用
收藏
页码:577 / 600
页数:24
相关论文
共 50 条
  • [41] A Primal-Dual Decomposition Algorithm for Multistage Stochastic Convex Programming
    Arjan Berkelaar
    Joaquim A. S. Gromicho
    Roy Kouwenberg
    Shuzhong Zhang
    Mathematical Programming, 2005, 104 : 153 - 177
  • [42] A new wide neighborhood primal-dual second-order corrector algorithm for linear optimization
    Darvay, Zsolt
    Kheirfam, Behrouz
    Rigo, Petra Renata
    OPTIMIZATION LETTERS, 2020, 14 (07) : 1747 - 1763
  • [43] Primal-dual interior point algorithm for penalized spectral unmixing
    Chouzenoux, Emilie
    Moussaoui, Said
    Legendre, Maxime
    Idier, Jerome
    TRAITEMENT DU SIGNAL, 2013, 30 (1-2) : 35 - 59
  • [44] PRIMAL-DUAL INTERIOR POINT MULTIGRID METHOD FOR TOPOLOGY OPTIMIZATION
    Kocvara, Michal
    Mohammed, Sudaba
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (05) : B685 - B709
  • [45] A wide neighborhood primal-dual predictor-corrector interior-point method for symmetric cone optimization
    Shahraki, M. Sayadi
    Mansouri, H.
    Zangiabadi, M.
    Mahdavi-Amiri, N.
    NUMERICAL ALGORITHMS, 2018, 78 (02) : 535 - 552
  • [46] A wide neighborhood primal-dual predictor-corrector interior-point method for symmetric cone optimization
    M. Sayadi Shahraki
    H. Mansouri
    M. Zangiabadi
    N. Mahdavi-Amiri
    Numerical Algorithms, 2018, 78 : 535 - 552
  • [47] LIMIT ANALYSIS WITH THE DUAL AFFINE SCALING ALGORITHM
    ANDERSEN, KD
    CHRISTIANSEN, E
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 59 (02) : 233 - 243
  • [49] A Primal-Dual Interior-Point Algorithm for Convex Quadratic Optimization Based on A Parametric Kernel Function
    Wang, Guoqiang
    Bai, Yanqin
    INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL SCIENCES AND OPTIMIZATION, VOL 2, PROCEEDINGS, 2009, : 748 - +
  • [50] A wide neighbourhood primal-dual second-order corrector interior point algorithm for semidefinite optimization
    Yang, Chong
    Duan, Fujian
    Li, Xiangli
    OPTIMIZATION, 2024, 73 (03) : 875 - 895