A polynomial primal-dual affine scaling algorithm for symmetric conic optimization

被引:2
作者
Mohammad-Nezhad, Ali [1 ]
Terlaky, Tamas [1 ]
机构
[1] Lehigh Univ, Dept Ind & Syst Engn, Harold S Mohler Lab, 200 West Packer Ave, Bethlehem, PA 18015 USA
关键词
Interior-point method; Dikin-type affine scaling method; symmetric conic optimization; Euclidean Jordan algebra; INTERIOR-POINT METHODS; JORDAN ALGEBRAS; CONES; EXTENSION; SDPT3;
D O I
10.1007/s10589-016-9874-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The primal-dual Dikin-type affine scaling method was originally proposed for linear optimization and then extended to semidefinite optimization. Here, the method is generalized to symmetric conic optimization using the notion of Euclidean Jordan algebras. The method starts with an interior feasible but not necessarily centered primal-dual solution, and it features both centering and reducing the duality gap simultaneously. The method's iteration complexity bound is analogous to the semidefinite optimization case. Numerical experiments demonstrate that the method is viable and robust when compared to SeDuMi, MOSEK and SDPT3.
引用
收藏
页码:577 / 600
页数:24
相关论文
共 50 条
  • [1] A polynomial primal-dual affine scaling algorithm for symmetric conic optimization
    Ali Mohammad-Nezhad
    Tamás Terlaky
    Computational Optimization and Applications, 2017, 66 : 577 - 600
  • [2] Polynomial primal-dual affine scaling algorithms in semidefinite programming
    De Klerk, E
    Roos, C
    Terlaky, T
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 1998, 2 (01) : 51 - 69
  • [3] Polynomial Primal-Dual Affine Scaling Algorithms in Semidefinite Programming
    E. de Klerk
    C. Roos
    T. Terlaky
    Journal of Combinatorial Optimization, 1998, 2 : 51 - 69
  • [4] A primal-dual symmetric relaxation for homogeneous conic systems
    Vera, Juan Carlos
    Rivera, Juan Carlos
    Pena, Javier
    Hui, Yao
    JOURNAL OF COMPLEXITY, 2007, 23 (02) : 245 - 261
  • [5] SUPERLINEAR PRIMAL-DUAL AFFINE SCALING ALGORITHMS FOR LCP
    MONTEIRO, RDC
    WRIGHT, SJ
    MATHEMATICAL PROGRAMMING, 1995, 69 (02) : 311 - 333
  • [6] A New Second-Order Infeasible Primal-Dual Path-Following Algorithm for Symmetric Optimization
    Yang, Ximei
    Zhang, Yinkui
    Liu, Hongwei
    Shen, Peiping
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2016, 37 (04) : 499 - 519
  • [7] Polynomiality of primal-dual affine scaling algorithms for nonlinear complementarity problems
    Benjamin Jansen
    Kees Roos
    Tamás Terlaky
    Akiko Yoshise
    Mathematical Programming, 1997, 78 : 315 - 345
  • [8] Polynomiality of primal-dual affine scaling algorithms for nonlinear complementarity problems
    Jansen, B
    Roos, K
    Terlaky, T
    Yoshise, A
    MATHEMATICAL PROGRAMMING, 1997, 78 (03) : 315 - 345
  • [9] On implementing a primal-dual interior-point method for conic quadratic optimization
    Andersen, ED
    Roos, C
    Terlaky, T
    MATHEMATICAL PROGRAMMING, 2003, 95 (02) : 249 - 277
  • [10] A primal-dual interior-point algorithm for symmetric optimization based on a new method for finding search directions
    Takacs, Petra Renata
    Darvay, Zsolt
    OPTIMIZATION, 2018, 67 (06) : 889 - 905