The Gautschi time stepping scheme for edge finite element discretizations of the Maxwell equations

被引:12
作者
Botchev, M. A. [1 ]
Harutyunyan, D. [1 ]
van der Vegt, J. J. W. [1 ]
机构
[1] Univ Twente, Dept Appl Math, NL-7500 AE Enschede, Netherlands
关键词
Maxwell equations; Gautschi cosine scheme; dispersion analysis; edge elements; staggered leap frog scheme; Krylov subspace; Arnoldi process;
D O I
10.1016/j.jcp.2006.01.014
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
For the time integration of edge finite element discretizations of the three-dimensional Maxwell equations, we consider the Gautschi cosine scheme where the action of the matrix function is approximated by a Krylov subspace method. First, for the space-discretized edge finite element Maxwell equations, the dispersion error of this scheme is analyzed in detail and compared to that of two conventional schemes. Second, we show that the scheme can be implemented in such a way that a higher accuracy can be achieved within less computational time (as compared to other implicit schemes). We also analyzed the error made in the Krylov subspace matrix function evaluations. Although the new scheme is unconditionally stable, it is explicit in structure: as an explicit scheme, it requires only the solution of linear systems with the mass matrix. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:654 / 686
页数:33
相关论文
共 41 条
[21]   Unconditionally stable algorithms to solve the time-dependent Maxwell equations [J].
Kole, JS ;
Figge, MT ;
De Raedt, H .
PHYSICAL REVIEW E, 2001, 64 (06) :66705/1-66705/14
[22]   Higher-order unconditionally stable algorithms to solve the time-dependent Maxwell equations [J].
Kole, J.S. ;
Figge, M.T. ;
De Raedt, H. .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2002, 65 (06) :1-066705
[23]   Time-domain finite-element methods [J].
Lee, JF ;
Lee, R ;
Cangellaris, A .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1997, 45 (03) :430-442
[24]   Phase-accuracy comparisons and improved far-field estimates for 3-D edge elements on tetrahedral meshes [J].
Monk, P ;
Parrott, K .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 170 (02) :614-641
[25]  
Monk P., 2003, FINITE ELEMENT METHO
[26]   A DISPERSION ANALYSIS OF FINITE-ELEMENT METHODS FOR MAXWELLS EQUATIONS [J].
MONK, PB ;
PARROTT, AK .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1994, 15 (04) :916-937
[27]   MIXED FINITE-ELEMENTS IN IR3 [J].
NEDELEC, JC .
NUMERISCHE MATHEMATIK, 1980, 35 (03) :315-341
[28]   A NEW FAMILY OF MIXED FINITE-ELEMENTS IN R3 [J].
NEDELEC, JC .
NUMERISCHE MATHEMATIK, 1986, 50 (01) :57-81
[29]  
Richtmyer R. D., 1967, Difference Methods for Initial-Value Problems
[30]   A vector finite element time-domain method for solving Maxwell's equations on unstructured hexahedral grids [J].
Rodrigue, G ;
White, D .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2001, 23 (03) :683-706