The Gautschi time stepping scheme for edge finite element discretizations of the Maxwell equations

被引:12
作者
Botchev, M. A. [1 ]
Harutyunyan, D. [1 ]
van der Vegt, J. J. W. [1 ]
机构
[1] Univ Twente, Dept Appl Math, NL-7500 AE Enschede, Netherlands
关键词
Maxwell equations; Gautschi cosine scheme; dispersion analysis; edge elements; staggered leap frog scheme; Krylov subspace; Arnoldi process;
D O I
10.1016/j.jcp.2006.01.014
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
For the time integration of edge finite element discretizations of the three-dimensional Maxwell equations, we consider the Gautschi cosine scheme where the action of the matrix function is approximated by a Krylov subspace method. First, for the space-discretized edge finite element Maxwell equations, the dispersion error of this scheme is analyzed in detail and compared to that of two conventional schemes. Second, we show that the scheme can be implemented in such a way that a higher accuracy can be achieved within less computational time (as compared to other implicit schemes). We also analyzed the error made in the Krylov subspace matrix function evaluations. Although the new scheme is unconditionally stable, it is explicit in structure: as an explicit scheme, it requires only the solution of linear systems with the mass matrix. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:654 / 686
页数:33
相关论文
共 41 条
[11]  
Gantmacher F.R., 1998, THEORY MATRICES, V1
[12]  
Gautschi W., 1961, NUMER MATH, V3, P381, DOI DOI 10.1007/BF01386037
[13]   AN UNCONDITIONALLY STABLE FINITE-ELEMENT TIME-DOMAIN SOLUTION OF THE VECTOR WAVE-EQUATION [J].
GEDNEY, SD ;
NAVSARIWALA, U .
IEEE MICROWAVE AND GUIDED WAVE LETTERS, 1995, 5 (10) :332-334
[14]  
Godunov SK., 1987, Difference schemes: an introduction to the underlying theory
[16]  
Hochbruck M, 1999, NUMER MATH, V83, P403, DOI 10.1007/s002119900067
[17]   Exponential integrators for large systems of differential equations [J].
Hochbruck, M ;
Lubich, C ;
Selhofer, H .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (05) :1552-1574
[18]   On Krylov subspace approximations to the matrix exponential operator [J].
Hochbruck, M ;
Lubich, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (05) :1911-1925
[19]  
HORVATH R, 2001, P C SCI COMP EL ENG, P231
[20]  
KNIZHNERMAN LA, 1991, COMP MATH MATH PHYS+, V31, P1