Fitting generated aggregation operators to empirical data

被引:22
作者
Beliakov, G
Mesiar, R
Valaskova, L
机构
[1] Deakin Univ, Sch Informat Technol, Burwood 3125, Australia
[2] Slovak Univ Technol Bratislava, Fac Civil Engn, Dept Math, SK-81368 Bratislava, Slovakia
关键词
aggregation operators; generated operators; triangular norms; uninorms; Choquet integral;
D O I
10.1142/S0218488504002783
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper treats the problem of fitting general aggregation operators with unfixed number of arguments to empirical data. We discuss methods applicable to associative operators (t-norms, t-conorms, uninorms and nullnorms), means and Choquet integral based operators with respect to a universal fuzzy measure. Special attention is paid to k-order additive symmetric fuzzy measures.
引用
收藏
页码:219 / 236
页数:18
相关论文
共 36 条
[1]  
Aczel J., 1969, APPL THEORY FUNCTION
[2]  
[Anonymous], 2000, APPROXIMATION THEORY
[3]   How to build aggregation operators from data [J].
Beliakov, G .
INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2003, 18 (08) :903-923
[4]   Monotone approximation of aggregation operators using least squares splines [J].
Beliakov, G .
INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2002, 10 (06) :659-676
[5]   Appropriate choice of aggregation operators in fuzzy decision support systems [J].
Beliakov, G ;
Warren, J .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2001, 9 (06) :773-784
[6]  
Beliakov G, 2000, P IPMU 2000, P680
[7]  
BELIAKOV G, 2002, P IPMU 2002 C ANN, V2, P945
[8]  
Benvenuti P, 2000, STUD FUZZ SOFT COMP, V40, P205
[9]  
Calvo T, 2002, STUD FUZZ SOFT COMP, V97, P3
[10]   The functional equations of Frank and Alsina for uninorms and nullnorms [J].
Calvo, T ;
De Baets, B ;
Fodor, J .
FUZZY SETS AND SYSTEMS, 2001, 120 (03) :385-394