Cell type-specific genetic and optogenetic tools reveal hippocampal CA2 circuits

被引:353
作者
Kohara, Keigo [1 ,2 ]
Pignatelli, Michele [1 ,2 ]
Rivest, Alexander J. [1 ,2 ]
Jung, Hae-Yoon [1 ,2 ]
Kitamura, Takashi [1 ,2 ]
Suh, Junghyup [1 ,2 ]
Frank, Dominic [1 ,2 ]
Kajikawa, Koichiro [1 ,2 ]
Mise, Nathan [3 ]
Obata, Yuichi [3 ]
Wickersham, Ian R. [4 ]
Tonegawa, Susumu [1 ,2 ,5 ]
机构
[1] MIT, Dept Biol, RIKEN MIT Ctr Neural Circuit Genet Picower Inst L, Cambridge, MA 02139 USA
[2] MIT, Dept Brain & Cognit Sci, Cambridge, MA 02139 USA
[3] RIKEN, BioResource Ctr, Tsukuba, Ibaraki, Japan
[4] MIT, Genet Neuroengn Grp, Cambridge, MA 02139 USA
[5] MIT, Howard Hughes Med Inst, Cambridge, MA USA
基金
美国国家卫生研究院;
关键词
RAT HIPPOCAMPUS; PYRAMIDAL NEURONS; SYNAPTIC PLASTICITY; DENTATE GYRUS; POSTSYNAPTIC TARGETS; DENDRITIC MORPHOLOGY; PATTERN SEPARATION; ENTORHINAL CORTEX; CEREBRAL-CORTEX; NMDA RECEPTORS;
D O I
10.1038/nn.3614
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The formation and recall of episodic memory requires precise information processing by the entorhinal-hippocampal network. For several decades, the trisynaptic circuit entorhinal cortex layer II (ECII)-> dentate gyrus -> CA3 -> CA1 and the monosynaptic circuit ECIII -> CA1 have been considered the primary substrates of the network responsible for learning and memory. Circuits linked to another hippocampal region, CA2, have only recently come to light. Using highly cell type-specific transgenic mouse lines, optogenetics and patch-clamp recordings, we found that dentate gyrus cells, long believed to not project to CA2, send functional monosynaptic inputs to CA2 pyramidal cells through abundant longitudinal projections. CA2 innervated CA1 to complete an alternate trisynaptic circuit, but, unlike CA3, projected preferentially to the deep, rather than to the superficial, sublayer of CA1. Furthermore, contrary to existing knowledge, ECIII did not project to CA2. Our results allow a deeper understanding of the biology of learning and memory.
引用
收藏
页码:269 / 279
页数:11
相关论文
共 51 条
[1]  
Acsády L, 1998, J NEUROSCI, V18, P3386
[2]   THE 3-DIMENSIONAL ORGANIZATION OF THE HIPPOCAMPAL-FORMATION - A REVIEW OF ANATOMICAL DATA [J].
AMARAL, DG ;
WITTER, MP .
NEUROSCIENCE, 1989, 31 (03) :571-591
[3]  
[Anonymous], 2007, HIPPOCAMPUS BOOK
[4]  
[Anonymous], 1995, HIST NEUROSCIENCE
[5]   DENDRITIC MORPHOLOGY OF CA1 PYRAMIDAL NEURONS FROM THE RAT HIPPOCAMPUS .1. BRANCHING PATTERNS [J].
BANNISTER, NJ ;
LARKMAN, AU .
JOURNAL OF COMPARATIVE NEUROLOGY, 1995, 360 (01) :150-160
[6]   DENDRITIC MORPHOLOGY OF CA1 PYRAMIDAL NEURONS FROM THE RAT HIPPOCAMPUS .2. SPINE DISTRIBUTIONS [J].
BANNISTER, NJ ;
LARKMAN, AU .
JOURNAL OF COMPARATIVE NEUROLOGY, 1995, 360 (01) :161-171
[7]   Parallel activation of field CA2 and dentate gyrus by synaptically elicited perforant path volleys [J].
Bartesaghi, R ;
Gessi, T .
HIPPOCAMPUS, 2004, 14 (08) :948-963
[8]   Electrophysiological and pharmacological characterization of the direct perforant path input to hippocampal area CA3 [J].
Berzhanskaya, J ;
Urban, NN ;
Barrionuevo, G .
JOURNAL OF NEUROPHYSIOLOGY, 1998, 79 (04) :2111-2118
[9]   The hippocampus and memory: insights from spatial processing [J].
Bird, Chris M. ;
Burgess, Neil .
NATURE REVIEWS NEUROSCIENCE, 2008, 9 (03) :182-194
[10]   New insights into the regulation of synaptic plasticity from an unexpected place: Hippocampal area CA2 [J].
Caruana, Douglas A. ;
Alexander, Georgia M. ;
Dudek, Serena M. .
LEARNING & MEMORY, 2012, 19 (09) :391-400