The Hurwitz zeta function as a convergent series

被引:4
作者
Dwilewicz, Roman [1 ]
Minac, Jan
机构
[1] Univ Missouri, Dept Math & Stat, Rolla, MO 65409 USA
[2] Polish Acad Sci, Inst Math, PL-00956 Warsaw, Poland
[3] Univ Western Ontario, Dept Math, London, ON N6A 5B7, Canada
关键词
Hurwitz zeta function; Bernoulli polynomials; Bernoulli numbers;
D O I
10.1216/rmjm/1181069411
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
New series for the Hurwitz zeta function which converge on the whole plane, except s = 1, are developed. This is applied to obtain a remarkably simple evaluation of some special values of the function.
引用
收藏
页码:1191 / 1219
页数:29
相关论文
共 58 条
  • [1] [Anonymous], P ADIC NUMBERS PADIC
  • [2] [Anonymous], FUNCTIONES APPROXIMA
  • [3] [Anonymous], 1991, PURE MATH
  • [4] [Anonymous], 1995, COMPLEX ANAL NUMBER
  • [5] [Anonymous], CURRENT DEV MATH
  • [6] [Anonymous], J LOND MATH SOC
  • [7] [Anonymous], 1993, CONTEMP MATH
  • [8] Apery R., 1979, Asterisque, V61, P11
  • [9] APERY R, 1981, B SECTION SCI CTHS, P37
  • [10] Apostol TM., 1998, INTRO ANAL NUMBER TH