Uniform estimates of the resolvent of the Laplace-Beltrami operator on infinite volume Riemannian manifolds. II

被引:67
作者
Cardoso, F [1 ]
Vodev, G
机构
[1] Univ Fed Pernambuco, Dept Matemat, BR-50540740 Recife, PE, Brazil
[2] Univ Nantes, Dept Math, CNRS, UMR 6639, F-44072 Nantes 03, France
来源
ANNALES HENRI POINCARE | 2002年 / 3卷 / 04期
关键词
D O I
10.1007/s00023-002-8631-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove uniform weighted high frequency estimates for the resolvent of the Laplace-Beltrami operator on connected infinite volume Riemannian manifolds under sonic natural assumptions on the metric on the ends of the manifold. This extends previous results by Burq [3] and Vodev [8].
引用
收藏
页码:673 / 691
页数:19
相关论文
共 8 条
[1]   Semiclassical resolvent estimates for trapping perturbations [J].
Bruneau, V ;
Petkov, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 213 (02) :413-432
[2]   Local energy decay of the wave equation for the exterior problem and absence of resonance in the neighborhood of the real axis [J].
Burq, N .
ACTA MATHEMATICA, 1998, 180 (01) :1-29
[3]  
BURQ N, IN PRESS AM J MATH
[4]   Stabilization of wave equations along the boundary [J].
Lebeau, G ;
Robbiano, L .
DUKE MATHEMATICAL JOURNAL, 1997, 86 (03) :465-491
[5]   EXACT CONTROL OF THE HEAT-EQUATION [J].
LEBEAU, G ;
ROBBIANO, L .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (1-2) :335-356
[6]  
Vodev G, 2000, MATH RES LETT, V7, P287
[7]   Uniform estimates of the resolvent of the Laplace-Beltrami operator on infinite volume Riemannian manifolds with CUSPS [J].
Vodev, G .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2002, 27 (7-8) :1437-1465
[8]  
Vodev G., 2000, SERDICA MATH J, V26, P49