Light structures in 1-planar graphs with an application to linear 2-arboricity

被引:11
作者
Liu, Juan [1 ]
Hu, Xiaoxue [2 ]
Wang, Weifan [1 ]
Wang, Yiqiao [3 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] Zhejiang Univ Sci & Technol, Sch Sci, Hangzhou 310023, Zhejiang, Peoples R China
[3] Beijing Univ Chinese Med, Sch Management, Beijing 100029, Peoples R China
关键词
1-planar graph; Linear; 2-arboricity; Light-edge; 2-alternating-cycle; Edge-partition; COLORINGS; EDGE;
D O I
10.1016/j.dam.2019.05.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The linear 2-arboricity la(2) (G) of a graph G is the least integer k such that G can be partitioned into k edge-disjoint forests, whose component trees are paths of length at most 2. A graph is called 1-planar if it can be drawn in the plane so that each edge is crossed by at most one other edge. In this paper, we show that every 1-planar graph G of minimum degree at least 2 contains either a 29-light-edge or a 2-alternating-cycle. This result is applied to show that if the maximum degree of a 1-planar graph G is Delta, then la(2)(G) <= inverted left perpendicular Delta+1/2 inverted right perpendicular +14 Since la(2 )(G) >= inverted left perpendicular Delta/2 inverted right perpendicular for any graph G, our solution is within 14 from optimal. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:120 / 130
页数:11
相关论文
共 22 条
[1]   ON LINEAR K-ARBORICITY [J].
BERMOND, JC ;
FOUQUET, JL ;
HABIB, M ;
PEROCHE, B .
DISCRETE MATHEMATICS, 1984, 52 (2-3) :123-132
[2]  
BORODIN OV, 1989, J REINE ANGEW MATH, V394, P180
[3]   Acyclic colouring of 1-planar graphs [J].
Borodin, OV ;
Kostochka, AV ;
Raspaud, A ;
Sopena, E .
DISCRETE APPLIED MATHEMATICS, 2001, 114 (1-3) :29-41
[4]   A NEW PROOF OF THE 6 COLOR THEOREM [J].
BORODIN, OV .
JOURNAL OF GRAPH THEORY, 1995, 19 (04) :507-521
[5]   Linear k-arboricities on trees [J].
Chang, GJ ;
Chen, BL ;
Fu, HL ;
Huang, KC .
DISCRETE APPLIED MATHEMATICS, 2000, 103 (1-3) :281-287
[6]  
Chen B., 1991, AUSTRALAS J COMBIN, V3, P55
[7]   On the linear k-arboricity of Kn and Kn,n [J].
Chen, BL ;
Huang, KC .
DISCRETE MATHEMATICS, 2002, 254 (1-3) :51-61
[8]   A note on total colorings of 1-planar graphs [J].
Czap, Julius .
INFORMATION PROCESSING LETTERS, 2013, 113 (14-16) :516-517
[9]   The structure of 1-planar graphs [J].
Fabrici, Igor ;
Madaras, Tomas .
DISCRETE MATHEMATICS, 2007, 307 (7-8) :854-865
[10]  
FU HL, 1994, ARS COMBINATORIA, V38, P309