Value-at-risk in uncertain random risk analysis

被引:37
作者
Liu, Yuhan [1 ]
Ralescu, Dan A. [1 ]
机构
[1] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
基金
中国国家自然科学基金;
关键词
Risk analysis; Uncertainty theory; Uncertain random variable; Chance measure;
D O I
10.1016/j.ins.2017.01.034
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Uncertain random variables provide a tool to deal with phenomena in which uncertainty and randomness simultaneously exist. This paper proposes a concept of Value-at-risk to quantify the risk of an uncertain random system. In addition, a value-at-risk theorem is proved in order to calculate the value-at-risk, and is applied to series systems, parallel system, k-out-of-n system, standby system, and structural system. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 21 条
[1]  
[Anonymous], 2009, THEORY PRACTICE UNCE
[2]   Some Concepts and Theorems of Uncertain Random Process [J].
Gao, Jinwu ;
Yao, Kai .
INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2015, 30 (01) :52-65
[3]   PROSPECT THEORY - ANALYSIS OF DECISION UNDER RISK [J].
KAHNEMAN, D ;
TVERSKY, A .
ECONOMETRICA, 1979, 47 (02) :263-291
[4]   Uncertain random multilevel programming with application to production control problem [J].
Ke, Hua ;
Su, Taoyong ;
Ni, Yaodong .
SOFT COMPUTING, 2015, 19 (06) :1739-1746
[5]  
Liu B, 2010, J Uncertain Syst, V4, P163
[6]  
Liu B., 2007, Uncertainty theory, V2nd, DOI DOI 10.1007/978-3-642-13959-8
[7]  
Liu B., 2009, J. Uncertain Syst., V3, P3
[8]  
Liu B., 2014, J. Uncertain Syst., V8, P3
[9]  
Liu B., 2015, Uncertainty Theory
[10]   Risk Index in Uncertain Random Risk Analysis [J].
Liu, Yuhan ;
Ralescu, Dan A. .
INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2014, 22 (04) :491-504