A GLOBALLY CONVERGENT GUMMEL MAP FOR OPTIMAL DOPANT PROFILING

被引:8
作者
Burger, Martin [1 ]
Pinnau, Rene [2 ]
机构
[1] Univ Munster, Inst Numer & Angew Math, D-48149 Munster, Germany
[2] Tech Univ Kaiserslautern, Fachbereich Math, D-67663 Kaiserslautern, Germany
关键词
Semiconductors; optimal design; dopant profiling; generalized Gummel iteration; convergence; drift diffusion model; energy transport model; MODEL;
D O I
10.1142/S0218202509003619
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a generalized Gummel iteration for the solution of an abstract optimal semiconductor design problem, which covers a wide range of semiconductor models. The algorithm is to exploit the special structure of the KKT system and it can be interpreted as a descent algorithm for an appropriately defined cost functional. This allows for a convergence proof which does not need the assumption of small biasing voltages. The algorithm is explicitly stated for the (quantum) drift diffusion model, the energy transport model and the microscopic Schrodinger-Poisson model.
引用
收藏
页码:769 / 786
页数:18
相关论文
共 38 条
[11]  
DRAGO C, 2007, MATH MODELS IN PRESS
[12]  
DRAGO CR, 2007, FAST OPTIMAL SEMICON
[13]  
DRAGO CR, 2004, P SCEE 2004 MATH IND
[14]   ON THE UNIQUENESS OF SOLUTIONS OF VANROOSBROECK EQUATIONS [J].
GAJEWSKI, H ;
SOMMREY, J .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1992, 72 (02) :151-153
[16]  
Hinze M, 2002, INT S NUM M, V139, P95
[17]   An optimal control approach to semiconductor design [J].
Hinze, M ;
Pinnau, R .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2002, 12 (01) :89-107
[18]  
Hinze M., 2006, JOTA, V133, P170
[19]  
Hinze M, 2007, BULL INST MATH ACAD, V2, P569
[20]   A mixed finite-element discretization of the energy-transport model for semiconductors [J].
Holst, S ;
Jüngel, A ;
Pietra, P .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 24 (06) :2058-2075