A GLOBALLY CONVERGENT GUMMEL MAP FOR OPTIMAL DOPANT PROFILING

被引:8
作者
Burger, Martin [1 ]
Pinnau, Rene [2 ]
机构
[1] Univ Munster, Inst Numer & Angew Math, D-48149 Munster, Germany
[2] Tech Univ Kaiserslautern, Fachbereich Math, D-67663 Kaiserslautern, Germany
关键词
Semiconductors; optimal design; dopant profiling; generalized Gummel iteration; convergence; drift diffusion model; energy transport model; MODEL;
D O I
10.1142/S0218202509003619
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a generalized Gummel iteration for the solution of an abstract optimal semiconductor design problem, which covers a wide range of semiconductor models. The algorithm is to exploit the special structure of the KKT system and it can be interpreted as a descent algorithm for an appropriately defined cost functional. This allows for a convergence proof which does not need the assumption of small biasing voltages. The algorithm is explicitly stated for the (quantum) drift diffusion model, the energy transport model and the microscopic Schrodinger-Poisson model.
引用
收藏
页码:769 / 786
页数:18
相关论文
共 38 条
[1]   MACROSCOPIC PHYSICS OF THE SILICON INVERSION LAYER [J].
ANCONA, MG ;
TIERSTEN, HF .
PHYSICAL REVIEW B, 1987, 35 (15) :7959-7965
[2]  
ARNOLD A, 2008, LECT NOTES IN PRESS
[3]   On an open transient Schrodinger-Poisson system [J].
Ben Abdallah, N ;
Méhats, F ;
Pinaud, O .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (05) :667-688
[4]   On the stationary quantum drift-diffusion model [J].
Ben Abdallah, N ;
Unterreiter, A .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1998, 49 (02) :251-275
[5]  
BENABDALLAH N, 2000, J MATH PHYS, V41, P2241
[6]  
BORZI A, 2007, J COMP APPL IN PRESS
[7]   Fast optimal design of semiconductor devices [J].
Burger, M ;
Pinnau, R .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2003, 64 (01) :108-126
[8]   MIXED-RKDG FINITE-ELEMENT METHODS FOR THE 2-D HYDRODYNAMIC MODEL FOR SEMICONDUCTOR-DEVICE SIMULATION [J].
CHEN, ZX ;
COCKBURN, B ;
JEROME, JW ;
SHU, CW .
VLSI DESIGN, 1995, 3 (02) :145-158
[9]  
Degond P, 1998, MATH METHOD APPL SCI, V21, P1399, DOI 10.1002/(SICI)1099-1476(199810)21:15<1399::AID-MMA1>3.0.CO
[10]  
2-#