Meta-analysis with missing data

被引:13
|
作者
White, Ian R. [1 ]
Higgins, Julian P. T. [1 ]
机构
[1] MRC Biostat Unit, Cambridge, England
来源
STATA JOURNAL | 2009年 / 9卷 / 01期
基金
英国医学研究理事会;
关键词
st0157; metamiss; meta-analysis; missing data; informative missingness odds ratio; UNCERTAINTY;
D O I
10.1177/1536867X0900900104
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
A new command, metamiss, performs meta-analysis with binary outcomes when some or all studies have missing data. Missing values can be imputed as successes, as failures, according to observed event rates, or by a combination of these according to reported reasons for the data being missing. Alternatively, the user can specify the value of, or a prior distribution for, the informative missingness odds ratio.
引用
收藏
页码:57 / 69
页数:13
相关论文
共 50 条
  • [31] Computing within-study covariances, data visualization, and missing data solutions for multivariate meta-analysis with metavcov
    Lu, Min
    FRONTIERS IN PSYCHOLOGY, 2023, 14
  • [32] AN EVALUATION OF TREATMENT-COVARIATE INTERACTION IN META-ANALYSIS WITH MARGINALIZING OF MISSING INDIVIDUAL PATIENT DATA
    Yamaguchi, Yusuke
    Sakamoto, Wataru
    Shirahata, Shingo
    Goto, Masashi
    JOURNAL JAPANESE SOCIETY OF COMPUTATIONAL STATISTICS, 2013, 26 (01): : 1 - 16
  • [33] Developing prediction models when there are systematically missing predictors in individual patient data meta-analysis
    Seo, Michael
    Furukawa, Toshi A.
    Karyotaki, Eirini
    Efthimiou, Orestis
    RESEARCH SYNTHESIS METHODS, 2023, 14 (03) : 455 - 467
  • [34] Comparison of exclusion, imputation and modelling of missing binary outcome data in frequentist network meta-analysis
    Spineli, Loukia M.
    Kalyvas, Chrysostomos
    BMC MEDICAL RESEARCH METHODOLOGY, 2020, 20 (01)
  • [35] An empirical comparison of Bayesian modelling strategies for missing binary outcome data in network meta-analysis
    Spineli, Loukia M.
    BMC MEDICAL RESEARCH METHODOLOGY, 2019, 19 (1)
  • [36] Comparison of exclusion, imputation and modelling of missing binary outcome data in frequentist network meta-analysis
    Loukia M. Spineli
    Chrysostomos Kalyvas
    BMC Medical Research Methodology, 20
  • [37] Z Allowing for uncertainty due to missing continuous outcome data in pairwise and network meta-analysis
    Mavridis, Dimitris
    White, Ian R.
    Higgins, Julian P. T.
    Cipriani, Andrea
    Salanti, Georgia
    STATISTICS IN MEDICINE, 2015, 34 (05) : 721 - 741
  • [38] A Bayesian framework to account for uncertainty due to missing binary outcome data in pairwise meta-analysis
    Turner, N. L.
    Dias, S.
    Ades, A. E.
    Welton, N. J.
    STATISTICS IN MEDICINE, 2015, 34 (12) : 2062 - 2080
  • [39] How robust are findings of pairwise and network meta-analysis in the presence of missing participant outcome data?
    Spineli, Loukia M.
    Kalyvas, Chrysostomos
    Papadimitropoulou, Katerina
    BMC MEDICINE, 2021, 19 (01)
  • [40] An empirical comparison of Bayesian modelling strategies for missing binary outcome data in network meta-analysis
    Loukia M. Spineli
    BMC Medical Research Methodology, 19