Introductory overview of identifiability analysis: A guide to evaluating whether you have the right type of data for your modeling purpose

被引:125
作者
Guillaume, Joseph H. A. [1 ,2 ]
Jakeman, John D. [3 ]
Marsili-Libelli, Stefano [4 ]
Asher, Michael [2 ]
Brunner, Philip [5 ]
Croke, Barry [2 ]
Hill, Mary C. [6 ]
Jakeman, Anthony J. [2 ]
Keesman, Karel J. [7 ]
Razavi, Saman [8 ,9 ]
Stigter, Johannes D. [7 ]
机构
[1] Aalto Univ, Water & Dev Res Grp, Helsinki, Finland
[2] Australian Natl Univ, Fenner Sch Environm & Soc, Canberra, ACT, Australia
[3] Sandia Natl Labs, Optimizat & Uncertainty Quantificat, Livermore, CA 94550 USA
[4] Univ Florence, Dept Informat Engn, Sch Engn, Florence, Italy
[5] Univ Neuchatel, Ctr Hydrogeol & Geothermie CHYN, Neuchatel, Switzerland
[6] Univ Kansas, Lawrence, KS 66045 USA
[7] Wageningen Univ, Math & Stat Methods Grp, Wageningen, Netherlands
[8] Univ Saskatchewan, Sch Environm & Sustainabil, Global Inst Water Secur, Saskatoon, SK, Canada
[9] Univ Saskatchewan, Dept Civil Geol & Environm Engn, Saskatoon, SK, Canada
基金
芬兰科学院;
关键词
Identifiability; Response surface; Non-uniqueness; Derivative based methods; Hessian; Emulation; Uncertainty; GLOBAL SENSITIVITY-ANALYSIS; STRUCTURAL IDENTIFIABILITY; POLYNOMIAL CHAOS; EVOLUTIONARY ALGORITHMS; ESTIMATED PARAMETERS; NEURAL-NETWORKS; DATA WORTH; SYSTEMS; IDENTIFICATION; EFFICIENT;
D O I
10.1016/j.envsoft.2019.07.007
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Identifiability is a fundamental concept in parameter estimation, and therefore key to the large majority of environmental modeling applications. Parameter identifiability analysis assesses whether it is theoretically possible to estimate unique parameter values from data, given the quantities measured, conditions present in the forcing data, model structure (and objective function), and properties of errors in the model and observations. In other words, it tackles the problem of whether the right type of data is available to estimate the desired parameter values. Identifiability analysis is therefore an essential technique that should be adopted more routinely in practice, alongside complementary methods such as uncertainty analysis and evaluation of model performance. This article provides an introductory overview to the topic. We recommend that any modeling study should document whether a model is non-identifiable, the source of potential non-identifiability, and how this affects intended project outcomes.
引用
收藏
页码:418 / 432
页数:15
相关论文
共 118 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]  
[Anonymous], 1989, NONLINEAR REGRESSION, DOI DOI 10.1002/0471725315
[3]  
[Anonymous], IDENTIFIABILITY PARA
[4]  
[Anonymous], 2000, SENSITIVITY ANAL
[5]   Improving Identifiability in Model Calibration Using Multiple Responses [J].
Arendt, Paul D. ;
Apley, Daniel W. ;
Chen, Wei ;
Lamb, David ;
Gorsich, David .
JOURNAL OF MECHANICAL DESIGN, 2012, 134 (10)
[6]   A review of surrogate models and their application to groundwater modeling [J].
Asher, M. J. ;
Croke, B. F. W. ;
Jakeman, A. J. ;
Peeters, L. J. M. .
WATER RESOURCES RESEARCH, 2015, 51 (08) :5957-5973
[7]   Effective modeling for Integrated Water Resource Management: A guide to contextual practices by phases and steps and future opportunities [J].
Badham, Jennifer ;
Elsawah, Sondoss ;
Guillaume, Joseph H. A. ;
Hamilton, Serena H. ;
Hunt, Randall J. ;
Jakeman, Anthony J. ;
Pierce, Suzanne A. ;
Snow, Valerie O. ;
Babbar-Sebens, Meghna ;
Fu, Baihua ;
Gober, Patricia ;
Hill, Mary C. ;
Iwanaga, Takuya ;
Loucks, Daniel P. ;
Merritt, Wendy S. ;
Peckham, Scott D. ;
Richmond, Amy K. ;
Zare, Fateme ;
Ames, Daniel ;
Bammer, Gabriele .
ENVIRONMENTAL MODELLING & SOFTWARE, 2019, 116 :40-56
[8]   AMIGO, a toolbox for advanced model identification in systems biology using global optimization [J].
Balsa-Canto, Eva ;
Banga, Julio R. .
BIOINFORMATICS, 2011, 27 (16) :2311-2313
[9]   WATER-QUALITY MODELING - A REVIEW OF THE ANALYSIS OF UNCERTAINTY [J].
BECK, MB .
WATER RESOURCES RESEARCH, 1987, 23 (08) :1393-1442
[10]  
BELLMAN R, 1970, Mathematical Biosciences, V7, P329, DOI 10.1016/0025-5564(70)90132-X