An Ensemble Model for Consumer Emotion Prediction Using EEG Signals for Neuromarketing Applications

被引:12
|
作者
Shah, Syed Mohsin Ali [1 ]
Usman, Syed Muhammad [2 ]
Khalid, Shehzad [3 ]
Rehman, Ikram Ur [4 ]
Anwar, Aamir [4 ]
Hussain, Saddam [5 ]
Ullah, Syed Sajid [6 ]
Elmannai, Hela [7 ]
Algarni, Abeer D. [7 ]
Manzoor, Waleed [3 ]
机构
[1] Shaheed Zulfikar Ali Bhutto Inst Sci & Technol, Dept Comp Sci, Islamabad 44000, Pakistan
[2] Air Univ, Fac Comp & AI, Dept Creat Technol, Islamabad 44000, Pakistan
[3] Bahria Univ, Dept Comp Engn, Islamabad 44000, Pakistan
[4] Univ West London, Sch Comp & Engn, London W5 5RF, England
[5] Univ Brunei Darussalam, Sch Digital Sci, Jalan Tungku Link, BE-1410 Gadong, Brunei
[6] Univ Agder UiA, Dept Informat & Commun Technol, N-4898 Grimstad, Norway
[7] Princess Nourah Bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Informat Technol, POB 84428, Riyadh 11671, Saudi Arabia
关键词
neuromarketing; EEG; SMOTE; LSTM; DWT; PSD; ELECTROENCEPHALOGRAM EEG; BRAIN; PREFERENCE; NETWORKS; STIMULI;
D O I
10.3390/s22249744
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Traditional advertising techniques seek to govern the consumer's opinion toward a product, which may not reflect their actual behavior at the time of purchase. It is probable that advertisers misjudge consumer behavior because predicted opinions do not always correspond to consumers' actual purchase behaviors. Neuromarketing is the new paradigm of understanding customer buyer behavior and decision making, as well as the prediction of their gestures for product utilization through an unconscious process. Existing methods do not focus on effective preprocessing and classification techniques of electroencephalogram (EEG) signals, so in this study, an effective method for preprocessing and classification of EEG signals is proposed. The proposed method involves effective preprocessing of EEG signals by removing noise and a synthetic minority oversampling technique (SMOTE) to deal with the class imbalance problem. The dataset employed in this study is a publicly available neuromarketing dataset. Automated features were extracted by using a long short-term memory network (LSTM) and then concatenated with handcrafted features like power spectral density (PSD) and discrete wavelet transform (DWT) to create a complete feature set. The classification was done by using the proposed hybrid classifier that optimizes the weights of two machine learning classifiers and one deep learning classifier and classifies the data between like and dislike. The machine learning classifiers include the support vector machine (SVM), random forest (RF), and deep learning classifier (DNN). The proposed hybrid model outperforms other classifiers like RF, SVM, and DNN and achieves an accuracy of 96.89%. In the proposed method, accuracy, sensitivity, specificity, precision, and F1 score were computed to evaluate and compare the proposed method with recent state-of-the-art methods.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] CNN and LSTM based ensemble learning for human emotion recognition using EEG recordings
    Abhishek Iyer
    Srimit Sritik Das
    Reva Teotia
    Shishir Maheshwari
    Rishi Raj Sharma
    Multimedia Tools and Applications, 2023, 82 : 4883 - 4896
  • [32] CIS feature selection based dynamic ensemble selection model for human stress detection from EEG signals
    Malviya, Lokesh
    Mal, Sandip
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2023, 26 (04): : 2367 - 2381
  • [33] Ensemble Machine Learning-Based Affective Computing for Emotion Recognition Using Dual-Decomposed EEG Signals
    Kamble, Kranti S.
    Sengupta, Joydeep
    Kamble, Kranti
    IEEE SENSORS JOURNAL, 2022, 22 (03) : 2496 - 2507
  • [34] A systematic literature review of emotion recognition using EEG signals
    Prabowo, Dwi Wahyu
    Nugroho, Hanung Adi
    Setiawan, Noor Akhmad
    Debayle, Johan
    COGNITIVE SYSTEMS RESEARCH, 2023, 82
  • [35] Enhancing Text Using Emotion Detected from EEG Signals
    Akash Gupta
    Harsh Sahu
    Nihal Nanecha
    Pradeep Kumar
    Partha Pratim Roy
    Victor Chang
    Journal of Grid Computing, 2019, 17 : 325 - 340
  • [36] CONTINUOUS EMOTION DETECTION USING EEG SIGNALS AND FACIAL EXPRESSIONS
    Soleymani, Mohammad
    Asghari-Esfeden, Sadjad
    Pantic, Maja
    Fu, Yun
    2014 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2014,
  • [37] Interpretable Emotion Classification Using Multidomain Feature of EEG Signals
    Zhao, Kunyuan
    Xu, Dan
    He, Kangjian
    Peng, Guoqin
    IEEE SENSORS JOURNAL, 2023, 23 (11) : 11879 - 11891
  • [38] Emotion Recognition Model of EEG Signals Based on Double Attention Mechanism
    Ma, Yahong
    Huang, Zhentao
    Yang, Yuyao
    Zhang, Shanwen
    Dong, Qi
    Wang, Rongrong
    Hu, Liangliang
    BRAIN SCIENCES, 2024, 14 (12)
  • [39] EEG-CNN-Souping: Interpretable emotion recognition from EEG signals using EEG-CNN-souping model and explainable AI
    Chaudary, Eamin
    Khan, Sheeraz Ahmad
    Mumtaz, Wajid
    COMPUTERS & ELECTRICAL ENGINEERING, 2025, 123
  • [40] A CONSUMER SENTIMENT ANALYSIS METHOD BASED ON EEG SIGNALS AND A RESNEXT MODEL
    Shen, Xiaoying
    Yuan, Chao
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2024, 24 (02)