An Operational Approach for Generating the Global Land Surface Downward Shortwave Radiation Product From MODIS Data

被引:54
作者
Zhang, Xiaotong [1 ,2 ,3 ]
Wang, Dongdong [4 ]
Liu, Qiang [1 ,2 ,5 ]
Yao, Yunjun [1 ,2 ,3 ]
Jia, Kun [1 ,2 ,3 ]
He, Tao [6 ]
Jiang, Bo [1 ,2 ,3 ]
Wei, Yu [1 ,2 ,3 ]
Ma, Han [6 ]
Zhao, Xiang [1 ,2 ,3 ]
Li, Wenhong [7 ]
Liang, Shunlin [4 ,6 ]
机构
[1] Beijing Normal Univ, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
[2] Chinese Acad Sci, State Key Lab Remote Sensing Sci, Inst Remote Sensing & Digital Earth, Beijing 100875, Peoples R China
[3] Beijing Normal Univ, Inst Remote Sensing Sci & Engn, Fac Geog Sci, Beijing Engn Res Ctr Global Land Remote Sensing P, Beijing 100875, Peoples R China
[4] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA
[5] Beijing Normal Univ, Coll Global Change & Earth Syst Sci, Beijing 100875, Peoples R China
[6] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 43079, Hubei, Peoples R China
[7] Duke Univ, Nicholas Sch Environm, Durham, NC 27708 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2019年 / 57卷 / 07期
基金
中国国家自然科学基金;
关键词
Globalirradiance; incident shortwave radiation; remote sensing; PHOTOSYNTHETICALLY ACTIVE RADIATION; SOLAR-RADIATION; NET-RADIATION; SATELLITE MEASUREMENTS; IRRADIANCE; ATMOSPHERE; MODEL; CLIMATOLOGY; VALIDATION; ABSORPTION;
D O I
10.1109/TGRS.2019.2891945
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Surface shortwave net radiation (SSNR) and surface downward shortwave radiation (DSR) are the two surface shortwave radiation components in earth's radiation budget and the fundamental quantities of energy available at the earth's surface. Although several global radiation products from global circulation models, global reanalyses, and satellite observations have been released, their coarse spatial resolutions and low accuracies limit their application. In this paper, the Global LAnd Surface Satellite (GLASS) DSR product was generated from the Moderate Resolution Imaging Spectroradiometer top-of-atmosphere (TOA) spectral reflectance based on a direct-estimation method. First, the TOA reflectances were derived based on the atmospheric radiative transfer simulations under different solar/view geometries; second, a linear regression relationship between the TOA reflectance and SSNR was developed under various atmospheric conditions and surface properties for different solar/view geometries; third, the coefficients derived from the linear regression were used to compute the SSNR; and finally, the DSR was estimated using the SSNR estimates and broadband albedo at the surface. A 13-year (2003-2015) GLASS DSR product was generated at a 5-km spatial resolution and 1-day temporal resolution. Compared with the ground measurements collected from 525 stations from 2003 to 2005 around the world, the model-computed SSNR (DSR) had an overall bias of 8.82 (3.72) W/m(2) and a root mean square error of 28.83 (32.84) W/m(2) at the daily time scale. Moreover, the global land annual mean of the DSR was determined to be 184.8 W/m(2) with a standard deviation of 0.8 W/m(2) over a 13-year (2003-2015) period.
引用
收藏
页码:4636 / 4650
页数:15
相关论文
共 63 条
  • [1] Ackerman S., 2010, DISCRIMINATING CLEAR
  • [2] [Anonymous], 2012, MEMB OF THE MODIS CH, P57
  • [3] Estimation of the net radiation using MODIS (Moderate Resolution Imaging Spectroradiometer) data for clear sky days
    Bisht, G
    Venturini, V
    Islam, S
    Jiang, L
    [J]. REMOTE SENSING OF ENVIRONMENT, 2005, 97 (01) : 52 - 67
  • [4] CESS RD, 1991, J CLIMATE, V4, P236, DOI 10.1175/1520-0442(1991)004<0236:DSSAFB>2.0.CO
  • [5] 2
  • [6] Cess RD, 1989, J CLIMATE, V2, P974, DOI 10.1175/1520-0442(1989)002<0974:ISSAFB>2.0.CO
  • [7] 2
  • [8] The ERA-Interim reanalysis: configuration and performance of the data assimilation system
    Dee, D. P.
    Uppala, S. M.
    Simmons, A. J.
    Berrisford, P.
    Poli, P.
    Kobayashi, S.
    Andrae, U.
    Balmaseda, M. A.
    Balsamo, G.
    Bauer, P.
    Bechtold, P.
    Beljaars, A. C. M.
    van de Berg, L.
    Bidlot, J.
    Bormann, N.
    Delsol, C.
    Dragani, R.
    Fuentes, M.
    Geer, A. J.
    Haimberger, L.
    Healy, S. B.
    Hersbach, H.
    Holm, E. V.
    Isaksen, L.
    Kallberg, P.
    Koehler, M.
    Matricardi, M.
    McNally, A. P.
    Monge-Sanz, B. M.
    Morcrette, J. -J.
    Park, B. -K.
    Peubey, C.
    de Rosnay, P.
    Tavolato, C.
    Thepaut, J. -N.
    Vitart, F.
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) : 553 - 597
  • [9] Estimating surface solar irradiance from METEOSAT SEVIRI-derived cloud properties
    Deneke, H. M.
    Feijt, A. J.
    Roebeling, R. A.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2008, 112 (06) : 3131 - 3141
  • [10] Gilgen H, 1999, B AM METEOROL SOC, V80, P831, DOI 10.1175/1520-0477(1999)080<0831:TGEBA>2.0.CO