Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems.: Part I

被引:291
作者
Rivière, B [1 ]
Wheeler, MF
Girault, V
机构
[1] Univ Texas, Texas Inst Computat & Appl Math, Ctr Subsurface Modeling, Austin, TX 78712 USA
[2] Univ Paris 06, Anal Numer Lab, F-75230 Paris 05, France
关键词
discontinuous spaces; elliptic equations; error estimates; constrained spaces;
D O I
10.1023/A:1011591328604
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Three Galerkin methods using discontinuous approximation spaces are introduced to solve elliptic problems. The underlying bilinear form for all three methods is the same and is nonsymmetric. In one case, a penalty is added to the form and in another, a constraint on jumps on each face of the triangulation. All three methods are locally conservative and the third one is not restricted. Optimal a priori hp error estimates are derived for all three procedures.
引用
收藏
页码:337 / 360
页数:24
相关论文
共 9 条
[1]   AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS [J].
ARNOLD, DN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :742-760
[2]  
BABUSKA I, 1987, RAIRO-MATH MODEL NUM, V21, P199
[3]  
BABUSKA I, 1987, SIAM J NUMER ANAL, V24
[4]  
BAUMANN CE, 1997, THESIS U TEXAS AUSTI
[5]  
Douglas J., 1976, LECT NOTE PHYS, P207, DOI 10.1007/BFb0120591
[6]   A discontinuous hp finite element method for diffusion problems [J].
Oden, JT ;
Babuska, I ;
Baumann, CE .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 146 (02) :491-519
[7]   LOCAL RESIDUAL FINITE-ELEMENT PROCEDURE FOR ELLIPTIC EQUATIONS [J].
PERCELL, P ;
WHEELER, MF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :705-714
[8]  
Wheeler M. F., 1980, Computational Methods in Nonlinear Mechanics. Proceedings of the TICOM Second International Conference, P485
[9]   ELLIPTIC COLLOCATION-FINITE ELEMENT METHOD WITH INTERIOR PENALTIES [J].
WHEELER, MF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (01) :152-161