AN IMPROVED ALGORITHM FOR SOLVING AN INVERSE EIGENVALUE PROBLEM FOR BAND MATRICES

被引:0
作者
Akaiwa, Kanae [1 ,2 ]
Yoshida, Akira [3 ]
Kondo, Koichi [3 ]
机构
[1] Kyoto Sangyo Univ, Fac Comp Sci & Engn, Kita Ku, Kyoto 6038555, Japan
[2] Kyoto Sangyo Univ, Fac Informat Sci & Engn, KitaKu, Kyoto 6038555, Japan
[3] Doshisha Univ, Grad Sch Sci & Engn, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 6100394, Japan
关键词
Inverse eigenvalue problem; Band matrix; Oscillatory matrix; Discrete integrable system; TOTALLY NONNEGATIVE MATRICES; CONSTRUCTION; SYSTEMS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The construction of matrices with prescribed eigenvalues is a kind of inverse eigenvalue problems. The authors proposed an algorithm for constructing band oscillatory matrices with prescribed eigenvalues based on the extended discrete hungry Toda equation (Numer. Algor. 75:1079-1101, 2017). In this paper, we develop a new algorithm for constructing band matrices with prescribed eigenvalues based on a generalization of the extended discrete hungry Toda equation. The new algorithm improves the previous algorithm so that the new one can produce more generic band matrices than the previous one in a certain sense. We compare the new algorithm with the previous one by numerical examples. Especially, we show an example of band oscillatory matrices which the new algorithm can produce but the previous one cannot.
引用
收藏
页码:745 / 759
页数:15
相关论文
共 30 条
  • [1] IMPROVED TESTS AND CHARACTERIZATIONS OF TOTALLY NONNEGATIVE MATRICES
    Adm, Mohammad
    Garloff, Juergen
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2014, 27 : 588 - 610
  • [2] Intervals of totally nonnegative matrices
    Adm, Mohammad
    Garloff, Juergen
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (12) : 3796 - 3806
  • [3] A tridiagonal matrix construction by the quotient difference recursion formula in the case of multiple eigenvalues
    Akaiwa, Kanae
    Iwasaki, Masashi
    Kondo, Koichi
    Nakamura, Yoshimasa
    [J]. PACIFIC JOURNAL OF MATHEMATICS FOR INDUSTRY, 2014, 6
  • [4] An arbitrary band structure construction of totally nonnegative matrices with prescribed eigenvalues
    Akaiwa, Kanae
    Nakamura, Yoshimasa
    Iwasaki, Masashi
    Yoshida, Akira
    Kondo, Koichi
    [J]. NUMERICAL ALGORITHMS, 2017, 75 (04) : 1079 - 1101
  • [5] A finite-step construction of totally nonnegative matrices with specified eigenvalues
    Akaiwa, Kanae
    Nakamura, Yoshimasa
    Iwasaki, Masashi
    Tsutsumi, Hisayoshi
    Kondo, Koichi
    [J]. NUMERICAL ALGORITHMS, 2015, 70 (03) : 469 - 484
  • [6] TOTALLY POSITIVE MATRICES
    ANDO, T
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 90 : 165 - 219
  • [7] [Anonymous], 2012, The GNU Multiple Precision Complex Library
  • [8] [Anonymous], GNU MPFR LIB
  • [9] [Anonymous], 1955, Z ANGEW MATH PHYS
  • [10] A SURVEY OF MATRIX INVERSE EIGENVALUE PROBLEMS
    BOLEY, D
    GOLUB, GH
    [J]. INVERSE PROBLEMS, 1987, 3 (04) : 595 - 622