Developing a Hybrid Neuro-Fuzzy Method to Predict Carbon Dioxide (CO2) Permeability in Mixed Matrix Membranes Containing SAPO-34 Zeolite

被引:5
作者
Alibak, Ali Hosin [1 ]
Alizadeh, Seyed Mehdi [2 ]
Davodi Monjezi, Shaghayegh [3 ]
Alizadeh, As'ad [4 ]
Alobaid, Falah [5 ]
Aghel, Babak [5 ,6 ]
机构
[1] Soran Univ, Fac Engn, Chem Engn Dept, Soran 44008, Iraq
[2] Australian Univ, Petr Engn Dept, West Mishref 11411, Kuwait
[3] Tarbiat Modares Univ, Fac Nat Resources & Marine Sci, Dept Environm Sci, Nur 46414356, Iran
[4] Cihan Univ Erbil, Coll Engn, Dept Civil Engn, Erbil 44001, Iraq
[5] Tech Univ Darmstadt, Inst Energiesyst & Energietechn, Otto Berndt Str 2, D-64287 Darmstadt, Germany
[6] Kermanshah Univ Technol, Fac Energy, Dept Chem Engn, Kermanshah 6715685420, Iran
关键词
mixed matrix membrane; SAPO-34; zeolite; carbon dioxide separation; theoretical analysis; adaptive neuro-fuzzy inference system (ANFIS); GAS SEPARATION; IONIC LIQUID; ANFIS;
D O I
10.3390/membranes12111147
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This study compares the predictive performance of different classes of adaptive neuro-fuzzy inference systems (ANFIS) in predicting the permeability of carbon dioxide (CO2) in mixed matrix membrane (MMM) containing the SAPO-34 zeolite. The hybrid neuro-fuzzy technique uses the MMM chemistry, pressure, and temperature to estimate CO2 permeability. Indeed, grid partitioning (GP), fuzzy C-means (FCM), and subtractive clustering (SC) strategies are used to divide the input space of ANFIS. Statistical analyses compare the performance of these strategies, and the spider graph technique selects the best one. As a result of the prediction of more than 100 experimental samples, the ANFIS with the subtractive clustering method shows better accuracy than the other classes. The hybrid optimization algorithm and cluster radius = 0.55 are the best hyperparameters of this ANFIS model. This neuro-fuzzy model predicts the experimental database with an absolute average relative deviation (AARD) of less than 3% and a correlation of determination higher than 0.995. Such an intelligent model is not only straightforward but also helps to find the best MMM chemistry and operating conditions to maximize CO2 separation.
引用
收藏
页数:15
相关论文
共 34 条
  • [31] Mixed matrix membranes containing MOF@COF hybrid fillers for efficient CO2/CH4 separation
    Cheng, Youdong
    Ying, Yunpan
    Zhai, Linzhi
    Liu, Guoliang
    Dong, Jinqiao
    Wang, Yuxiang
    Christopher, Mark Prasath
    Long, Sichang
    Wang, Yaxin
    Zhao, Dan
    JOURNAL OF MEMBRANE SCIENCE, 2019, 573 : 97 - 106
  • [32] PEO-based mixed matrix membranes containing N-doped microporous carbon microparticles for enhanced CO2/N2 separation
    Li, Run
    Yang, Ying
    Zhang, Zezhou
    Lian, Shaohan
    Zhao, Quan
    Song, Chunfeng
    JOURNAL OF MEMBRANE SCIENCE, 2023, 685
  • [33] Carbon Dioxide (CO2) Separation from Natural Gas using Single-layer and Dual-layer Mixed-matrix Membranes (MMMs)
    Ahmad, Siti Halimah
    Othman, Mohd Hafiz Dzarfan
    Rahman, Mukhlis A.
    Jaafar, Juhana
    Ismail, A. F.
    JURNAL TEKNOLOGI, 2014, 69 (09):
  • [34] Carbon nanotubes and graphene oxide-based solvent-free hybrid nanofluids functionalized mixed-matrix membranes for efficient CO2/N2 separation
    Wang, Dechao
    Yao, Dongdong
    Wang, Yudeng
    Wang, Feng
    Xin, Yangyang
    Song, Shan
    Zhang, Zhilin
    Su, Fangfang
    Zheng, Yaping
    SEPARATION AND PURIFICATION TECHNOLOGY, 2019, 221 : 421 - 432