Low temperature synthesis of high quality BNNTs via argon supported thermal CVD

被引:21
作者
Ahmad, Pervaiz [1 ,3 ]
Khandalier, Mayeen Uddin [1 ]
Amin, Yusoff Mohd [1 ]
Amin, Muhammad [2 ,3 ]
Irshad, Muhammad Imran [3 ]
Din, Israf Ud [4 ]
机构
[1] Univ Malaya, Fac Sci, Dept Phys, Kuala Lumpur 50603, Malaysia
[2] Univ Punjab, Dept Phys, Lahore 54590, Pakistan
[3] Univ Punjab, Ctr Excellence Solid State Phys, Lahore 54590, Pakistan
[4] Kohat Univ Sci & Technol, Dept Chem, Kohat 26000, Pakistan
关键词
Chemical preparation; Electron microscopy; X-ray methods; Sensors; BNNTs; BORON-NITRIDE NANOTUBES; CARBON NANOTUBES; SILICON-CARBIDE; PRECURSOR; GROWTH;
D O I
10.1016/j.ceramint.2015.08.102
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The anti-oxidant nature of Argon gas prevents the formation of water vapors and oxidation of as produced catalysts. These facts have made it possible to synthesize high quality boron nitride nanotubes via Argon supported thermal chemical vapor deposition at a relatively lower temperature of 900 degrees C. The synthesized sample is the combination of straight, nearly straight and curve like morphologies of boron nitride nanotubes with diameter in the range of 20-80 nm. Internally, each tube has bamboo like structure whereas the external part has lattice fringes with an interlayer spacing of similar to 0.34 nm. X-ray photoelectron spectroscopy shows B 1s and N 1s peaks at 191.4 and 398.7 eV for hexagonal boron nitride nature of the synthesized nanotubes whereas, the recorded Raman spectrum reports a high intensity peak at 1372 (cm(-1)) that corresponds to E-2g mode of vibration in hexagonal boron nitride. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
引用
收藏
页码:15222 / 15226
页数:5
相关论文
共 43 条
[31]   Synthesis of nanoparticles and nanotubes with well-separated layers of boron nitride and carbon [J].
Suenaga, K ;
Colliex, C ;
Demoncy, N ;
Loiseau, A ;
Pascard, H ;
Willaime, F .
SCIENCE, 1997, 278 (5338) :653-655
[32]   A novel precursor for synthesis of pure boron nitride nanotubes [J].
Tang, C ;
Bando, Y ;
Sato, T ;
Kurashima, K .
CHEMICAL COMMUNICATIONS, 2002, (12) :1290-1291
[33]  
Tang CC, 2002, ADV MATER, V14, P1046, DOI 10.1002/1521-4095(20020805)14:15<1046::AID-ADMA1046>3.0.CO
[34]  
2-H
[35]   Comparative theoretical study of carbon nanotubes and boron-nitride nanotubes [J].
Wang, BC ;
Tsai, MH ;
Chou, YM .
SYNTHETIC METALS, 1997, 86 (1-3) :2379-2380
[36]   Recent advancements in boron nitride nanotubes [J].
Wang, Jiesheng ;
Lee, Chee Huei ;
Yap, Yoke Khin .
NANOSCALE, 2010, 2 (10) :2028-2034
[37]   A two-stage route to coaxial cubic-aluminum-nitride-boron-nitride composite nanotubes [J].
Yin, LW ;
Bando, Y ;
Zhu, YC ;
Golberg, D ;
Li, MS .
ADVANCED MATERIALS, 2004, 16 (11) :929-933
[38]   Coaxial nanocable: Silicon carbide and silicon oxide sheathed with boron nitride and carbon [J].
Zhang, Y ;
Suenaga, K ;
Colliex, C ;
Iijima, S .
SCIENCE, 1998, 281 (5379) :973-975
[39]   Substrate-site selective growth of aligned carbon nanotubes [J].
Zhang, ZJ ;
Wei, BQ ;
Ramanath, G ;
Ajayan, PM .
APPLIED PHYSICS LETTERS, 2000, 77 (23) :3764-3766
[40]   Boron nitride nanotubes [J].
Zhi, Chunyi ;
Bando, Yoshio ;
Tang, Chengchun ;
Golberg, Dmitri .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2010, 70 (3-6) :92-111