HIF-1-driven skeletal muscle adaptations to chronic hypoxia: molecular insights into muscle physiology

被引:84
作者
Favier, F. B. [1 ,2 ]
Britto, F. A. [1 ,2 ]
Freyssenet, D. G. [3 ]
Bigard, X. A. [4 ]
Benoit, H. [5 ,6 ]
机构
[1] INRA, UMR Dynam Musculaire & Metabol 866, F-34060 Montpellier, France
[2] Univ Montpellier, F-34090 Montpellier, France
[3] Univ St Etienne, Univ Lyon, Lab Physiol Exercice EA 4338, F-42000 St Etienne, France
[4] Agence Francaise Lutte Contre Dopage, F-75007 Paris, France
[5] INSERM, Hypoxie Physiopathol U1042, F-38000 Grenoble, France
[6] Univ Grenoble 1, F-38000 Grenoble, France
关键词
Altitude; Atrophy; Hypoxia inducible factor; Metabolism; Mitochondria; Oxidative stress; INDUCIBLE FACTOR-I; ACUTE ENVIRONMENTAL HYPOXIA; CHRONIC HYPOBARIC HYPOXIA; MICE PARTIALLY DEFICIENT; OPERATION EVEREST-II; PROTEIN-SYNTHESIS; MITOCHONDRIAL AUTOPHAGY; INDUCED INHIBITION; CAPILLARY DENSITY; AEROBIC CAPACITY;
D O I
10.1007/s00018-015-2025-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Skeletal muscle is a metabolically active tissue and the major body protein reservoir. Drop in ambient oxygen pressure likely results in a decrease in muscle cells oxygenation, reactive oxygen species (ROS) overproduction and stabilization of the oxygen-sensitive hypoxia-inducible factor (HIF)-1 alpha. However, skeletal muscle seems to be quite resistant to hypoxia compared to other organs, probably because it is accustomed to hypoxic episodes during physical exercise. Few studies have observed HIF-1 alpha accumulation in skeletal muscle during ambient hypoxia probably because of its transient stabilization. Nevertheless, skeletal muscle presents adaptations to hypoxia that fit with HIF-1 activation, although the exact contribution of HIF-2, I kappa B kinase and activating transcription factors, all potentially activated by hypoxia, needs to be determined. Metabolic alterations result in the inhibition of fatty acid oxidation, while activation of anaerobic glycolysis is less evident. Hypoxia causes mitochondrial remodeling and enhanced mitophagy that ultimately lead to a decrease in ROS production, and this acclimatization in turn contributes to HIF-1 alpha destabilization. Likewise, hypoxia has structural consequences with muscle fiber atrophy due to mTOR-dependent inhibition of protein synthesis and transient activation of proteolysis. The decrease in muscle fiber area improves oxygen diffusion into muscle cells, while inhibition of protein synthesis, an ATP-consuming process, and reduction in muscle mass decreases energy demand. Amino acids released from muscle cells may also have protective and metabolic effects. Collectively, these results demonstrate that skeletal muscle copes with the energetic challenge imposed by O-2 rarefaction via metabolic optimization.
引用
收藏
页码:4681 / 4696
页数:16
相关论文
共 155 条
  • [1] Aerobic capacity and skeletal muscle properties of normoxic and hypoxic rats in response to training
    Abdelmalki, A
    Fimbel, S
    MayetSornay, MH
    Sempore, B
    Favier, R
    [J]. PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1996, 431 (05): : 671 - 679
  • [2] Effect of HIF1A Gene Polymorphism on Human Muscle Performance
    Ahmetov, I. I.
    Hakimullina, A. M.
    Lyubaeva, E. V.
    Vinogradova, O. L.
    Rogozkin, V. A.
    [J]. BULLETIN OF EXPERIMENTAL BIOLOGY AND MEDICINE, 2008, 146 (03) : 351 - 353
  • [3] ALAMOOD WS, 1989, J PHYSIOL-LONDON, V414, P1
  • [4] Physiological activation of hypoxia inducible factor-1 in human skeletal muscle
    Ameln, H
    Gustafsson, T
    Sundberg, CJ
    Okamoto, K
    Jansson, E
    Poellinger, L
    Makino, Y
    [J]. FASEB JOURNAL, 2005, 19 (06) : 1009 - +
  • [5] Down-Regulation of Akt/Mammalian Target of Rapamycin Signaling Pathway in Response to Myostatin Overexpression in Skeletal Muscle
    Amirouche, Adel
    Durieux, Anne-Cecile
    Banzet, Sebastien
    Koulmann, Nathalie
    Bonnefoy, Regis
    Mouret, Catherine
    Bigard, Xavier
    Peinnequin, Andre
    Freyssenet, Damien
    [J]. ENDOCRINOLOGY, 2009, 150 (01) : 286 - 294
  • [6] Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism
    Aragones, Julian
    Schneider, Martin
    Van Geyte, Katie
    Fraisl, Peter
    Dresselaers, Tom
    Mazzone, Massimiliano
    Dirkx, Ruud
    Zacchigna, Serena
    Lemieux, Helene
    Jeoung, Nam Ho
    Lambrechts, Diether
    Bishop, Tammie
    Lafuste, Peggy
    Diez-Juan, Antonio
    Harten, Sarah K.
    Van Noten, Pieter
    De Bock, Katrien
    Willam, Carsten
    Tjwa, Marc
    Grosfeld, Alexandra
    Navet, Rachel
    Moons, Lieve
    Vandendriessche, Thierry
    Deroose, Christophe
    Wijeyekoon, Bhathiya
    Nuyts, Johan
    Jordan, Benedicte
    Silasi-Mansat, Robert
    Lupu, Florea
    Dewerchin, Mieke
    Pugh, Chris
    Salmon, Phil
    Mortelmans, Luc
    Gallez, Bernard
    Gorus, Frans
    Buyse, Johan
    Sluse, Francis
    Harris, Robert A.
    Gnaiger, Erich
    Hespel, Peter
    Van Hecke, Paul
    Schuit, Frans
    Van Veldhoven, Paul
    Ratcliffe, Peter
    Baes, Myriam
    Maxwell, Patrick
    Carmeliet, Peter
    [J]. NATURE GENETICS, 2008, 40 (02) : 170 - 180
  • [7] Protein synthesis during oxygen conformance and severe hypoxia in the mouse muscle cell line C2C12
    Arthur, PG
    Giles, JJ
    Wakeford, CM
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2000, 1475 (01): : 83 - 89
  • [8] Badger JL, 2012, REGEN MED, V7, P675, DOI [10.2217/RME.12.55, 10.2217/rme.12.55]
  • [9] Tight Control of Hypoxia-inducible Factor-α Transient Dynamics Is Essential for Cell Survival in Hypoxia
    Bagnall, James
    Leedale, Joseph
    Taylor, Sarah E.
    Spiller, David G.
    White, Michael R. H.
    Sharkey, Kieran J.
    Bearon, Rachel N.
    See, Violaine
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2014, 289 (09) : 5549 - 5564
  • [10] Hypoxia-induced BNIP3 expression and mitophagy: in vivo comparison of the rat and the hypoxia-tolerant mole rat, Spalax ehrenbergi
    Band, Mark
    Joel, Alma
    Hernandez, Alvaro
    Avivi, Aaron
    [J]. FASEB JOURNAL, 2009, 23 (07) : 2327 - 2335