Simultaneous stirring and microwave assisted synthesis of nanoflakes MnO2/rGO composite electrode material for symmetric supercapacitor with enhanced electrochemical performance

被引:57
|
作者
Vimuna, V. M. [1 ]
Athira, A. R. [1 ]
Babu, K. V. Dinesh [2 ]
Xavier, T. S. [1 ]
机构
[1] Univ Kerala, Govt Coll Women, Ctr Adv Mat Res, Dept Phys, Thiruvananthapuram 14, Kerala, India
[2] Univ Kerala, Govt Coll Women, Dept Chem, Thiruvananthapuram 14, Kerala, India
关键词
Reduced graphene oxide; Transition metal oxides; Composites; Energy storage; Porous morphology; Supercapacitor; MANGANESE OXIDE NANOSTRUCTURES; ENERGY-CONVERSION; GRAPHENE; CARBON; DECOMPOSITION; CAPACITANCE; DESIGN; FILM;
D O I
10.1016/j.diamond.2020.108129
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanoflakes MnO2/reduced graphene oxide (NMG) composite and MnO2 nanoflakes (MN) were successfully synthesized through a modified method in which periodic repetition of stirring and microwave irradiation simultaneously were done for 21 cycles. The as-synthesized samples were characterized using X-ray diffraction, Fourier transformed infrared spectroscopy, Scanning electron microscopy, Energy-dispersive X-ray spectroscopy and Brunauer-Emmett-Teller analysis. Symmetric supercapacitors were fabricated using prepared MN and NMG composite as electrode materials. The NMG symmetric supercapacitor exhibited higher specific capacitance (140.3 Fg(-1) at 1 mA) and specific capacitance retention (91%) than MN symmetric supercapacitor. At the same time, the NMG symmetric supercapacitor also delivered a maximum energy density of 19.5 Wh kg(-1) at a power density of 633.7 W kg(-1) and remained 17 Wh kg(-1) at 1864.3 W kg(-1). Moreover, the efficiency of this composite symmetric supercapacitor is 99.4% retained even after 5000 charge/discharge cycles at 2 mA current.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Electrochemical performance of CNTs/RGO/MnO2 composite material for supercapacitor
    Lu, Liquan
    Xu, Shengming
    An, Junwei
    Yan, Shaohui
    NANOMATERIALS AND NANOTECHNOLOGY, 2016, 6
  • [2] Development of MnO2/rGO Composite Electrodes for Enhanced Electrochemical Supercapacitor Performance
    Saravanan, A.
    Arunachalam, P.
    Reddy, Ganta Raghotham
    Vijayan, V.
    JOURNAL OF NEW MATERIALS FOR ELECTROCHEMICAL SYSTEMS, 2024, 27 (03) : 208 - 214
  • [3] Sonochemical assisted synthesis MnO2/RGO nanohybrid as effective electrode material for supercapacitor
    Ghasemi, Shahram
    Hosseini, Sayed Reza
    Boore-talari, Omid
    ULTRASONICS SONOCHEMISTRY, 2018, 40 : 675 - 685
  • [4] Synthesis and Electrochemical Performance of MnO2 Nanowires/Polyaniline Composite as Supercapacitor Electrode Material
    Du, Xiangxiang
    Liu, Shujun
    Xu, Qin
    Shi, Xuejun
    JOURNAL OF ELECTRONIC MATERIALS, 2023, 52 (06) : 3991 - 3999
  • [5] Facile synthesis of MnO2 nanorods grown on porous carbon for supercapacitor with enhanced electrochemical performance
    Lin, Zhen
    Xiang, Xiaotong
    Chen, Kai
    Peng, Shuijiao
    Jiang, Xiancai
    Hou, Linxi
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2019, 540 : 466 - 475
  • [6] Microwave-assisted Synthesis of rGO/CeO2 Supercapacitor Electrode Materials with Excellent Electrochemical Properties
    Zhai, Yao
    Xin, Guoxiang
    Wang, Jiaqi
    Zhang, Bangwen
    Song, Jinling
    Liu, Xiaoxu
    ACTA CHIMICA SINICA, 2021, 79 (09) : 1129 - 1137
  • [7] Enhanced electrochemical performance of nano-MnO2 modified by Ni(OH)2 as electrode material for supercapacitor
    Song, Wei
    Shao, Guangjie
    Wang, Guiling
    Ma, Zhipeng
    Liu, Shuang
    Song, Jianjun
    Wang, Caixia
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2014, 18 (11) : 3173 - 3180
  • [8] Electrochemical Deposition of MnO2/RGO Nanocomposite Thin Film: Enhanced Supercapacitor Behavior
    Rahmanabadi, F.
    Sangpour, P.
    Sabouri-Dodaran, A. A.
    JOURNAL OF ELECTRONIC MATERIALS, 2019, 48 (09) : 5813 - 5820
  • [9] RGO-wrapped MnO2 composite electrode for supercapacitor application
    Chan, P. Y.
    Rusi
    Majid, S. R.
    SOLID STATE IONICS, 2014, 262 : 226 - 229
  • [10] Nanostructured MnO2:: Hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material
    Subramanian, V.
    Zhu, Hongwei
    Wei, Bingqing
    JOURNAL OF POWER SOURCES, 2006, 159 (01) : 361 - 364