Elucidation of intrinsic biosynthesis yields using 13C-based metabolism analysis

被引:16
作者
Varman, Arul M. [1 ]
He, Lian [1 ]
You, Le [1 ]
Hollinshead, Whitney [1 ]
Tang, Yinjie J. [1 ]
机构
[1] Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO 63130 USA
基金
美国国家科学基金会;
关键词
Cell maintenance; Co metabolism; Metabolic flux analysis; P/O ratio; Yeast extract; ENGINEERING ESCHERICHIA-COLI; FATTY-ACIDS; FLUX ANALYSIS; E; COLI; PATHWAYS; STRAIN; OVERPRODUCTION; OPTIMIZATION; FERMENTATION; CHALLENGES;
D O I
10.1186/1475-2859-13-42
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
This paper discusses the use of C-13-based metabolism analysis for the assessment of intrinsic product yields -the actual carbon contribution from a single carbon substrate to the final product via a specific biosynthesis route -in the following four cases. First, undefined nutrients (such as yeast extract) in fermentation may contribute significantly to product synthesis, which can be quantified through an isotopic dilution method. Second, product and biomass synthesis may be dependent on the co-metabolism of multiple-carbon sources. 13C labeling experiments can track the fate of each carbon substrate in the cell metabolism and identify which substrate plays a main role in product synthesis. Third, 13C labeling can validate and quantify the contribution of the engineered pathway (versus the native pathway) to the product synthesis. Fourth, the loss of catabolic energy due to cell maintenance (energy used for functions other than production of new cell components) and low P/O ratio (Phosphate/Oxygen Ratio) significantly reduces product yields. Therefore, C-13-metabolic flux analysis is needed to assess the influence of suboptimal energy metabolism on microbial productivity, and determine how ATP/NAD(P) H are partitioned among various cellular functions. Since product yield is a major determining factor in the commercialization of a microbial cell factory, we foresee that C-13-isotopic labeling experiments, even without performing extensive flux calculations, can play a valuable role in the development and verification of microbial cell factories.
引用
收藏
页数:8
相关论文
共 57 条
[1]   Isoprenoid Pathway Optimization for Taxol Precursor Overproduction in Escherichia coli [J].
Ajikumar, Parayil Kumaran ;
Xiao, Wen-Hai ;
Tyo, Keith E. J. ;
Wang, Yong ;
Simeon, Fritz ;
Leonard, Effendi ;
Mucha, Oliver ;
Phon, Too Heng ;
Pfeifer, Blaine ;
Stephanopoulos, Gregory .
SCIENCE, 2010, 330 (6000) :70-74
[2]   Metabolic flux analysis in a nonstationary system:: Fed-batch fermentation of a high yielding strain of E. coli producing 1,3-propanediol [J].
Antoniewicz, Maciek R. ;
Kraynie, David F. ;
Laffend, Lisa A. ;
Gonzalez-Lergier, Joanna ;
Kelleher, Joanne K. ;
Stephanopoulos, Gregory .
METABOLIC ENGINEERING, 2007, 9 (03) :277-292
[3]   Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels [J].
Atsumi, Shota ;
Hanai, Taizo ;
Liao, James C. .
NATURE, 2008, 451 (7174) :86-U13
[4]   Directed Evolution of Methanococcus jannaschii Citramalate Synthase for Biosynthesis of 1-Propanol and 1-Butanol by Escherichia coli [J].
Atsumi, Shota ;
Liao, James C. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2008, 74 (24) :7802-7808
[5]   High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal [J].
Baez, Antonino ;
Cho, Kwang-Myung ;
Liao, James C. .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2011, 90 (05) :1681-1690
[6]   Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli [J].
Bastian, Sabine ;
Liu, Xiang ;
Meyerowitz, Joseph T. ;
Snow, Christopher D. ;
Chen, Mike M. Y. ;
Arnold, Frances H. .
METABOLIC ENGINEERING, 2011, 13 (03) :345-352
[7]   Systems-Wide Analysis and Engineering of Metabolic Pathway Fluxes in Bio-Succinate Producing Basfia Succiniciproducens [J].
Becker, Judith ;
Reinefeld, Jasper ;
Stellmacher, Rene ;
Schaefer, Rudolf ;
Lange, Anna ;
Meyer, Hanna ;
Lalk, Michael ;
Zelder, Oskar ;
von Abendroth, Gregory ;
Schroeder, Hartwig ;
Haefner, Stefan ;
Wittmann, Christoph .
BIOTECHNOLOGY AND BIOENGINEERING, 2013, 110 (11) :3013-3023
[8]   Respiration of Escherichia coli Can Be Fully Uncoupled via the Nonelectrogenic Terminal Cytochrome bd-II Oxidase [J].
Bekker, M. ;
de Vries, S. ;
Ter Beek, A. ;
Hellingwerf, K. J. ;
de Mattos, M. J. Teixeira .
JOURNAL OF BACTERIOLOGY, 2009, 191 (17) :5510-5517
[9]   Absolute quantitation of intracellular metabolite concentrations by an isotope ratio-based approach [J].
Bennett, Bryson D. ;
Yuan, Jie ;
Kimball, Elizabeth H. ;
Rabinowitz, Joshua D. .
NATURE PROTOCOLS, 2008, 3 (08) :1299-1311
[10]  
Berg Jeremy M., 1995, Biochemistry, V4TH