Estimation of wrist angle from sonomyography using support vector machine and artificial neural network models

被引:47
|
作者
Xie, Hong-Bo [1 ,3 ]
Zheng, Yong-Ping [1 ,2 ]
Guo, Jing-Yi [1 ]
Chen, Xin [1 ]
Shi, Jun [1 ,4 ]
机构
[1] Hong Kong Polytech Univ, Dept Hlth Technol & Informat, Kowloon, Hong Kong, Peoples R China
[2] Hong Kong Polytech Univ, Res Inst Innovat Prod & Technol, Kowloon, Hong Kong, Peoples R China
[3] Jiangsu Univ, Dept Biomed Engn, Zhenjiang, Peoples R China
[4] Shanghai Univ, Sch Commun & Informat Engn, Shanghai 200444, Peoples R China
关键词
Sonomyography (SMG); Ultrasound; Muscle; Wrist angle prediction; Electromyography (EMG); Least squares support vector machine (LS-SVM); Artificial neural network (ANN); TIME-SERIES; FOREARM MUSCLES; SURFACE EMG; PREDICTION; ELECTROMYOGRAPHY; FEASIBILITY; CONTRACTION; DIAGNOSIS; TUTORIAL;
D O I
10.1016/j.medengphy.2008.05.005
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Sonomyography (SMG) is the signal we previously termed to describe muscle contraction using real-time muscle thickness changes extracted from ultrasound images. In this paper, we used least squares support vector machine (LS-SVM) and artificial neural networks (ANN) to predict dynamic wrist angles from SMG signals. Synchronized wrist angle and SMG signals from the extensor carpi radialis muscles of five normal subjects were recorded during the process of wrist extension and flexion at rates of 15, 22.5, and 30 cycles/min, respectively. An LS-SVM model together with back-propagation (BP) and radial basis function (RBF) ANN was developed and trained using the data sets collected at the rate of 22.5 cycles/min for each subject. The established LS-SVM and ANN models were then used to predict the wrist angles for the remained data sets obtained at different extension rates. It was found that the wrist angle signals collected at different rates could be accurately predicted by all the three methods, based on the values of root mean square difference (RMSD < 0.2) and the correlation coefficient (CC > 0.98), with the performance of the LS-SVM model being significantly better (RMSD < 0.15, CC > 0.99) than those of its counterparts. The results also demonstrated that the models established for the rate of 22.5 cycles/min could be used for the prediction from SMG data sets obtained under other extension rates. It was concluded that the wrist angle could be precisely estimated from the thickness changes of the extensor carpi radialis using LS-SVM or ANN models. (c) 2008 IPEM. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:384 / 391
页数:8
相关论文
共 50 条
  • [21] A Comparative Study of Support Vector Machine, Artificial Neural Network and Bayesian Classifier for Mutagenicity Prediction
    Sharma, Anju
    Kumar, Rajnish
    Varadwaj, Pritish Kumar
    Ahmad, Ausaf
    Ashraf, Ghulam Md
    INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2011, 3 (03) : 232 - 239
  • [22] RUNOFF ESTIMATION IN URBAN CATCHMENT USING ARTIFICIAL NEURAL NETWORK MODELS
    Bakhshaei, Mahsa
    Ahmadi, Hassan
    Motamedvaziri, Baharak
    Najafi, Payam
    SISTEMAS & GESTAO, 2020, 15 (02): : 170 - 180
  • [23] Mango leaf disease recognition using neural network and support vector machine
    Md. Rasel Mia
    Sujit Roy
    Subrata Kumar Das
    Md. Atikur Rahman
    Iran Journal of Computer Science, 2020, 3 (3) : 185 - 193
  • [24] Classification of fMRI Data using Support Vector Machine and Convolutional Neural Network
    Zafar, Raheel
    Malik, Aamir Saeed
    Shuaibu, Aliyu Nuhu
    Rehman, M. Javvad ur
    Dass, Sarat C.
    2017 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING APPLICATIONS (ICSIPA), 2017, : 324 - 329
  • [25] Classification and Prediction of Heart Disease Risk Using Data Mining Techniques of Support Vector Machine and Artificial Neural Network
    Radhimeenakshi, S.
    PROCEEDINGS OF THE 10TH INDIACOM - 2016 3RD INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT, 2016, : 3107 - 3111
  • [26] Modeling stage-discharge-sediment using support vector machine and artificial neural network coupled with wavelet transform
    Kumar, Manish
    Kumar, Pravendra
    Kumar, Anil
    Elbeltagi, Ahmed
    Kuriqi, Alban
    APPLIED WATER SCIENCE, 2022, 12 (05)
  • [27] Modelling a chemical plant using grey-box models employing the support vector regression and artificial neural network
    Ghasemi, Mahmood
    Jazayeri-Rad, Hooshang
    Behbahani, Reza Mosayebi
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2025, 103 (02) : 622 - 636
  • [28] Modeling the viscosity of nanofluids using artificial neural network and Bayesian support vector regression
    Alade, Ibrahim Olanrewaju
    Abd Rahman, Mohd Amiruddin
    Hassan, Amjed
    Saleh, Tawfik A.
    JOURNAL OF APPLIED PHYSICS, 2020, 128 (08)
  • [29] Transient Modeling of Induction Machine Using Artificial Neural Network Surrogate Models
    Tahkola, Mikko
    Mukherjee, Victor
    Keranen, Janne
    IEEE TRANSACTIONS ON MAGNETICS, 2022, 58 (09)
  • [30] Support Vector Machine Methods and Artificial Neural Networks Used for the Development of Bankruptcy Prediction Models and their Comparison
    Horak, Jakub
    Vrbka, Jaromir
    Suler, Petr
    JOURNAL OF RISK AND FINANCIAL MANAGEMENT, 2020, 13 (03)