Enhanced heat transfer properties of RGO-TiO2 based Ethylene Glycol Nanofluids

被引:7
作者
Bhunia, Mississippi Missouri [1 ]
Das, Swati [2 ,3 ]
Chattopadhyay, Kalyan Kumar [3 ]
Chattopadhyay, Paramita [1 ]
机构
[1] IIEST, Dept Elect Engn, Sibpur 711103, Howrah, India
[2] Anandamohan Coll, Kolkata 700009, India
[3] Jadavpur Univ, Thin Flim & Nanosci Lab, Kolkata 700032, India
关键词
Nanofluids; Stable dispersions; thermal conductivity; viscosity; THERMAL-CONDUCTIVITY; PERFORMANCE;
D O I
10.1016/j.matpr.2019.06.569
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Stable nanofluids of ethylene glycol (EG) containing RGO-TiO2 composite structures has been achieved at two weight percentages (wt %) (0.015 & 0.025) without usage of surfactant. The composite material was synthesized via chemical treatment of previously synthesized TiO2 and GO. Nanofluids are witnessed to possess higher thermal conductivity than pure EG or EG containing same amount of TiO2; whereas no significant change in viscosity was noticed. Maximum 11 % enhancement in thermal conductivity is obtained with low viscosity and high zeta potential (-21.5 mV). The thermal response and infrared images of nanofluid surfaces support the rising slope in thermal conductivity. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1096 / 1107
页数:12
相关论文
共 29 条
[1]   Enhanced Thermal Conductivity of Copper Nanofluids: The Effect of Filler Geometry [J].
Bhanushali, Sushrut ;
Jason, Naveen Noah ;
Ghosh, Prakash ;
Ganesh, Anuradda ;
Simon, George P. ;
Cheng, Wenlong .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (22) :18925-18935
[2]   Characterization of the temperature oscillation technique to measure the thermal conductivity of fluids [J].
Bhattacharya, P. ;
Nara, S. ;
Vijayan, P. ;
Tang, T. ;
Lai, W. ;
Phelan, P. E. ;
Prasher, R. S. ;
Song, D. W. ;
Wang, J. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2006, 49 (17-18) :2950-2956
[3]  
Bhunia M. M., ENV EL ENG EEEIC 201, P1
[4]   Amorphous graphene - Transformer oil nanofluids with superior thermal and insulating properties [J].
Bhunia, Mississippi Missouri ;
Panigrahi, Karamjyoti ;
Das, Swati ;
Chattopadhyay, Kalyan Kumar ;
Chattopadhyay, Paramita .
CARBON, 2018, 139 :1010-1019
[5]   Nanodiamond Nanofluids for Enhanced Thermal Conductivity [J].
Branson, Blake T. ;
Beauchamp, Paul S. ;
Beam, Jeremiah C. ;
Lukehart, Charles M. ;
Davidson, Jim L. .
ACS NANO, 2013, 7 (04) :3183-3189
[6]   THERMAL-CONDUCTIVITY MEASUREMENT FROM 30-K TO 750-K - THE 3-OMEGA METHOD [J].
CAHILL, DG .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1990, 61 (02) :802-808
[7]   Heat Transfer in Water-Based SiC and TiO2 Nanofluids [J].
Celata, Gian Piero ;
D'Annibale, Francesco ;
Mariani, Andrea ;
Saraceno, Luca ;
D'Amato, Rosaria ;
Bubbico, Roberto .
HEAT TRANSFER ENGINEERING, 2013, 34 (13) :1060-1072
[8]   Anomalous thermal conductivity enhancement in nanotube suspensions [J].
Choi, SUS ;
Zhang, ZG ;
Yu, W ;
Lockwood, FE ;
Grulke, EA .
APPLIED PHYSICS LETTERS, 2001, 79 (14) :2252-2254
[9]   Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles [J].
Eastman, JA ;
Choi, SUS ;
Li, S ;
Yu, W ;
Thompson, LJ .
APPLIED PHYSICS LETTERS, 2001, 78 (06) :718-720
[10]   Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids [J].
Evans, William ;
Prasher, Ravi ;
Fish, Jacob ;
Meakin, Paul ;
Phelan, Patrick ;
Keblinski, Pawel .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2008, 51 (5-6) :1431-1438