IMPULSIVE FUNCTIONAL-DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER WITH VARIABLE MOMENTS

被引:3
作者
Ergoren, H. [1 ]
机构
[1] Yuzuncu Yil Univ, Van, Turkey
关键词
INTEGRODIFFERENTIAL EQUATIONS; EXISTENCE; UNIQUENESS;
D O I
10.1007/s11253-017-1299-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish some existence results for the solutions of initial-value problems for fractional-order impulsive functional differential equations with neutral delay at variable moments.
引用
收藏
页码:1340 / 1352
页数:13
相关论文
共 50 条
  • [31] Impulsive neutral functional differential equations driven by a fractional Brownian motion with unbounded delay
    Boudaoui, Ahmed
    Caraballo, Tomas
    Ouahab, Abdelghani
    APPLICABLE ANALYSIS, 2016, 95 (09) : 2039 - 2062
  • [32] Existence results for some impulsive partial functional fractional differential equations
    Hammouche, Hadda
    Lemkeddem, Mouna
    Guerbati, Kaddour
    Ezzinbi, Khalil
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2020, 13 (04)
  • [33] Fractional order iterative functional differential equations with parameter
    Wang, JinRong
    Feckan, Michal
    Zhou, Yong
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (08) : 6055 - 6067
  • [34] Impulsive fractional partial differential equations
    Guo, Tian Liang
    Zhang, KanJian
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 : 581 - 590
  • [35] Uncertain impulsive functional differential systems of fractional order and almost periodicity
    Stamov, G. T.
    Stamova, I. M.
    Cao, Jinde
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2018, 355 (12): : 5310 - 5323
  • [36] BOUNDARY-VALUE-PROBLEMS FOR SINGULAR 2ND-ORDER FUNCTIONAL-DIFFERENTIAL EQUATIONS
    ERBE, LH
    KONG, QK
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1994, 53 (03) : 377 - 388
  • [37] On the concept and existence of solution for impulsive fractional differential equations
    Feckan, Michal
    Zhou, Yong
    Wang, JinRong
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (07) : 3050 - 3060
  • [38] Qualitative analysis of variable-order fractional differential equations with constant delay
    Naveen, S.
    Parthiban, V.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (04) : 2981 - 2992
  • [39] A SURVEY ON IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS
    Wang, JinRong
    Feckan, Michal
    Zhou, Yong
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (04) : 806 - 831
  • [40] Impulsive fractional differential equations with nonlinear boundary conditions
    Cao, Jianxin
    Chen, Haibo
    MATHEMATICAL AND COMPUTER MODELLING, 2012, 55 (3-4) : 303 - 311