APPROXIMATING RATIONAL POINTS ON TORIC VARIETIES

被引:4
|
作者
McKinnon, David [1 ]
Satriano, Matthew [1 ]
机构
[1] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1090/tran/8318
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a smooth projective variety X over a number field k and P is an element of X(k), the first author conjectured that in a precise sense, any sequence that approximates P sufficiently well must lie on a rational curve. We prove this conjecture for smooth split toric surfaces conditional on Vojta's conjecture. More generally, we show that if X is a Q-factorial terminal split toric variety of arbitrary dimension, then P is better approximated by points on a rational curve than by any Zariski dense sequence.
引用
收藏
页码:3557 / 3577
页数:21
相关论文
共 50 条
  • [21] Points of bounded height on smooth hypersurfaces of toric varieties
    Mignot, Teddy
    ACTA ARITHMETICA, 2016, 172 (01) : 1 - 97
  • [23] Rational points and cohomology of discriminant varieties
    Lehrer, GI
    ADVANCES IN MATHEMATICS, 2004, 186 (01) : 229 - 250
  • [24] Rational points on certain homogeneous varieties
    Pengyu Yang
    European Journal of Mathematics, 2023, 9
  • [25] Counting rational points on algebraic varieties
    Heath-Brown, D. R.
    ANALYTIC NUMBER THEORY, 2006, 1891 : 51 - 95
  • [26] Counting rational points on projective varieties
    Salberger, Per
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2023, 126 (04) : 1092 - 1133
  • [27] Logarithms of rational points of Abelian varieties
    Bosser, Vincent
    Gaudron, Eric
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2019, 71 (02): : 247 - 298
  • [28] Counting rational points on algebraic varieties
    Browning, TD
    Heath-Brown, DR
    Salberger, P
    DUKE MATHEMATICAL JOURNAL, 2006, 132 (03) : 545 - 578
  • [29] Varieties with too many rational points
    T. D. Browning
    D. Loughran
    Mathematische Zeitschrift, 2017, 285 : 1249 - 1267
  • [30] Notes on the rational points of Fermat varieties
    Bernardi, D
    Halberstadt, E
    Kraus, A
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2003, 46 (01): : 26 - 38