Glioma Segmentation with Cascaded UNet

被引:39
作者
Lachinov, Dmitry [1 ,2 ]
Vasiliev, Evgeny [1 ]
Turlapov, Vadim [1 ]
机构
[1] Lobachevsky State Univ, Gagarina Ave 23, Nizhnii Novgorod 603950, Russia
[2] Intel, Nizhnii Novgorod, Russia
来源
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT II | 2019年 / 11384卷
关键词
Segmentation; BraTS; UNet; Cascaded UNet; Multiple encoders;
D O I
10.1007/978-3-030-11726-9_17
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
MRI analysis takes central position in brain tumor diagnosis and treatment, thus its precise evaluation is crucially important. However, its 3D nature imposes several challenges, so the analysis is often performed on 2D projections that reduces the complexity, but increases bias. On the other hand, time consuming 3D evaluation, like segmentation, is able to provide precise estimation of a number of valuable spatial characteristics, giving us understanding about the course of the disease. Recent studies focusing on the segmentation task, report superior performance of Deep Learning methods compared to classical computer vision algorithms. But still, it remains a challenging problem. In this paper we present deep cascaded approach for automatic brain tumor segmentation. Similar to recent methods for object detection, our implementation is based on neural networks; we propose modifications to the 3D UNet architecture and augmentation strategy to efficiently handle multimodal MRI input, besides this we introduce approach to enhance segmentation quality with context obtained from models of the same topology operating on downscaled data. We evaluate presented approach on BraTS 2018 dataset and achieve promising results on test dataset with 14th place and Dice score of 0.720/0.878/0.785 for enhancing tumor, whole tumor and tumor core segmentation respectively.
引用
收藏
页码:189 / 198
页数:10
相关论文
共 11 条
[1]  
Bakas S., 2018, ARXIV PREPRINT ARXIV
[2]   Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Sotiras, Aristeidis ;
Bilello, Michel ;
Rozycki, Martin ;
Kirby, Justin S. ;
Freymann, John B. ;
Farahani, Keyvan ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2017, 4
[3]   High Prevalence of Assisted Injection Among Street-Involved Youth in a Canadian Setting [J].
Cheng, Tessa ;
Kerr, Thomas ;
Small, Will ;
Dong, Huiru ;
Montaner, Julio ;
Wood, Evan ;
DeBeck, Kora .
AIDS AND BEHAVIOR, 2016, 20 (02) :377-384
[4]  
Cicek O, 2016, Medical Image Computing and ComputerAssisted InterventionMICCAI 2016, P424
[5]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[6]   Brain Tumor Segmentation and Radiomics Survival Prediction: Contribution to the BRATS 2017 Challenge [J].
Isensee, Fabian ;
Kickingereder, Philipp ;
Wick, Wolfgang ;
Bendszus, Martin ;
Maier-Hein, Klaus H. .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2017, 2018, 10670 :287-297
[7]  
Johnson H.J., 2013, The ITK Software Guide, Vthird
[8]  
Kamnitsas K., 2016, Medical Image Analysis
[9]   The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) [J].
Menze, Bjoern H. ;
Jakab, Andras ;
Bauer, Stefan ;
Kalpathy-Cramer, Jayashree ;
Farahani, Keyvan ;
Kirby, Justin ;
Burren, Yuliya ;
Porz, Nicole ;
Slotboom, Johannes ;
Wiest, Roland ;
Lanczi, Levente ;
Gerstner, Elizabeth ;
Weber, Marc-Andre ;
Arbel, Tal ;
Avants, Brian B. ;
Ayache, Nicholas ;
Buendia, Patricia ;
Collins, D. Louis ;
Cordier, Nicolas ;
Corso, Jason J. ;
Criminisi, Antonio ;
Das, Tilak ;
Delingette, Herve ;
Demiralp, Cagatay ;
Durst, Christopher R. ;
Dojat, Michel ;
Doyle, Senan ;
Festa, Joana ;
Forbes, Florence ;
Geremia, Ezequiel ;
Glocker, Ben ;
Golland, Polina ;
Guo, Xiaotao ;
Hamamci, Andac ;
Iftekharuddin, Khan M. ;
Jena, Raj ;
John, Nigel M. ;
Konukoglu, Ender ;
Lashkari, Danial ;
Mariz, Jose Antonio ;
Meier, Raphael ;
Pereira, Sergio ;
Precup, Doina ;
Price, Stephen J. ;
Raviv, Tammy Riklin ;
Reza, Syed M. S. ;
Ryan, Michael ;
Sarikaya, Duygu ;
Schwartz, Lawrence ;
Shin, Hoo-Chang .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (10) :1993-2024
[10]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241