Stochastic 2-D Navier-Stokes equation

被引:116
作者
Menaldi, JL [1 ]
Sritharan, SS
机构
[1] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[2] USN, SPAWAR SSD, San Diego, CA 92152 USA
关键词
stochastic Navier-Stokes equation; maximal monotone operator; Markov-Feller semigroup; stochastic differential equations;
D O I
10.1007/s00245-002-0734-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the existence and uniqueness of strong solutions for the stochastic Navier-Stokes equation in bounded and unbounded domains. These solutions are stochastic analogs of the classical Lions-Prodi solutions to the deterministic Navier-Stokes equation. Local monotonicity of the nonlinearity is exploited to obtain the solutions in a given probability space and this significantly improves the earlier techniques for obtaining strong solutions, which depended on pathwise solutions to the Navier-Stokes martingale problem where the probability space is also obtained as a part of the solution.
引用
收藏
页码:31 / 53
页数:23
相关论文
共 23 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]   Flow invariance preserving feedback controllers for the Navier-Stokes equation [J].
Barbu, V ;
Sritharan, SS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 255 (01) :281-307
[3]   STOCHASTIC NAVIER-STOKES EQUATIONS [J].
BENSOUSSAN, A .
ACTA APPLICANDAE MATHEMATICAE, 1995, 38 (03) :267-304
[4]  
Bensoussan A., 1973, J. Funct. Anal, V13, P195, DOI [10.1016/0022-1236(73)90045-1, DOI 10.1016/0022-1236(73)90045-1]
[5]  
CAPINSKI M, 1995, NONSTANDARD METHODS
[6]  
CHANDRASEKHAR S, 1989, STOCHASTIC STAT HYDR, V3
[7]  
CONSTANTIN P, 1988, NAVIERSTOKES EQUATIO
[8]  
Da Prato G, 1996, ERGODICITY INFINITE
[9]  
DAVEIGA HB, 1987, INDIANA U MATH J, V36, P149
[10]   MARTINGALE AND STATIONARY SOLUTIONS FOR STOCHASTIC NAVIER-STOKES EQUATIONS [J].
FLANDOLI, F ;
GATAREK, D .
PROBABILITY THEORY AND RELATED FIELDS, 1995, 102 (03) :367-391