Temporal Sampling Requirements for Reference Region Modeling of DCE-MRI Data in Human Breast Cancer

被引:33
作者
Planey, Catherine R. [2 ]
Welch, E. Brian [3 ]
Xu, Lei [4 ]
Chakravarthy, A. Bapsi [5 ]
Gatenby, J. Christopher [6 ]
Freehardt, Darla [7 ]
Mayer, Ingrid [7 ]
Meszeoly, Ingrid [8 ]
Kelley, Mark [8 ]
Means-Powell, Julie [8 ]
Gore, John C. [6 ,9 ,10 ,11 ]
Yankeelov, Thomas E. [1 ,9 ,10 ,12 ]
机构
[1] Vanderbilt Univ, Med Ctr, Inst Imaging Sci, Nashville, TN 37232 USA
[2] Yale Univ, Dept Biomed Engn, New Haven, CT USA
[3] Philips Healthcare, MR Clin Sci, Cleveland, OH USA
[4] Vanderbilt Univ, Dept Biostat, Nashville, TN 37232 USA
[5] Vanderbilt Univ, Dept Radiat Oncol, Nashville, TN 37232 USA
[6] Vanderbilt Univ, Dept Radiol & Radiol Sci, Nashville, TN 37232 USA
[7] Vanderbilt Univ, Dept Oncol, Nashville, TN 37232 USA
[8] Vanderbilt Univ, Dept Surg Oncol, Nashville, TN 37232 USA
[9] Vanderbilt Univ, Dept Biomed Engn, Nashville, TN 37232 USA
[10] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37232 USA
[11] Vanderbilt Univ, Dept Mol Physiol & Biophys, Nashville, TN 37232 USA
[12] Vanderbilt Univ, Dept Canc Biol, Nashville, TN 37232 USA
基金
美国国家卫生研究院;
关键词
DCE-MRI; breast cancer; temporal sampling; pharmacokinetics; CONTRAST-ENHANCED MRI; ARTERIAL INPUT FUNCTION; TRANSCYTOLEMMAL WATER EXCHANGE; RESONANCE-IMAGING MEASUREMENTS; HIGH FAMILIAL RISK; NEOADJUVANT CHEMOTHERAPY; PHARMACOKINETIC ANALYSIS; REFERENCE TISSUES; TRACER KINETICS; BOLUS INJECTION;
D O I
10.1002/jmri.21812
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To assess the temporal sampling requirements needed for quantitative analysis of dynamic contrast-enhanced MRI (DCE-MRI) data with a reference region (RR) model in human breast cancer. Materials and Methods: Simulations were used to study errors in pharmacokinetic parameters (K-trans and upsilon(e)) estimated by the RR model using six DCE-MRI acquisitions over a range of pharmacokinetic parameter values, arterial input functions, and temporal samplings. DCE-MRI data were acquired on 12 breast cancer patients and parameters were estimated using the native resolution data (16.4 seconds) and compared to downsampled 32.8-second and 65.6-second data. Results: Simulations show that, in the majority of parameter combinations, the RR model results in an error less than 20% in the extracted parameters with temporal sampling as poor as 35.6 seconds. The experimental results show a high correlation between K-trans and upsilon(e) estimates from data acquired at 16.4-second temporal resolution compared to the downsampled 32.8-second data: the slope of the regression line was 1.025 (95% confidence interval [CI]: 1.021, 1.029). Pearson's correlation r = 0.943 (95% CI: 0.940, 0.945) for K-trans and 1.023 (95% CI: 1.021. 1.025), r = 0.979 (95% CI: 0.978, 0.980) for upsilon(e). For the 64-second temporal resolution data the results were: 0.890 (95% CI: 0.894, 0.905), r = 0.8645, (95% CI: 0.858, 0.871) for K-trans, and 1.041 (95% Cl: 1.039, 1.043), r = 0.970 (95% Cl: 0.968, 0.971) for upsilon(e). Conclusion: RR analysis allows for a significant reduction in temporal sampling requirements and this lends itself to analyze DCE-MRI data acquired in practical situations.
引用
收藏
页码:121 / 134
页数:14
相关论文
共 50 条
[31]   Intratumor heterogeneity of DCE-MRI reveals Ki-67 proliferation status in breast cancer [J].
Cheng, Hu ;
Fan, Ming ;
Zhang, Peng ;
Liu, Bin ;
Shao, Guoliang ;
Li, Lihua .
MEDICAL IMAGING 2018: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2018, 10579
[32]   Molecular subtypes classification of breast cancer in DCE-MRI using deep features [J].
Hasan, Ali M. ;
Al-Waely, Noor K. N. ;
Aljobouri, Hadeel K. ;
Jalab, Hamid A. ;
Ibrahim, Rabha W. ;
Meziane, Farid .
EXPERT SYSTEMS WITH APPLICATIONS, 2024, 236
[33]   Joint-phase attention network for breast cancer segmentation in DCE-MRI [J].
Huang, Rian ;
Xu, Zeyan ;
Xie, Yu ;
Wu, Hong ;
Li, Zixian ;
Cui, Yanfen ;
Huo, Yingwen ;
Han, Chu ;
Yang, Xiaotang ;
Liu, Zaiyi ;
Wang, Yi .
EXPERT SYSTEMS WITH APPLICATIONS, 2023, 224
[34]   A comparison of arterial spin labeling perfusion MRI and DCE-MRI in human prostate cancer [J].
Cai, Wenchao ;
Li, Feiyu ;
Wang, Jing ;
Du, Huarui ;
Wang, Xiaoying ;
Zhang, Jue ;
Fang, Jing ;
Jiang, Xuexiang .
NMR IN BIOMEDICINE, 2014, 27 (07) :817-825
[35]   Bounding boxes for weakly-supervised breast cancer segmentation in DCE-MRI [J].
Zhong, Yuming ;
Xu, Zeyan ;
Han, Chu ;
Liu, Zaiyi ;
Wang, Yi .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 105
[36]   Predicting Survival and Early Clinical Response to Primary Chemotherapy for Patients With Locally Advanced Breast Cancer Using DCE-MRI [J].
Johansen, Roar ;
Jensen, Line R. ;
Rydand, Jana ;
Goa, Pal E. ;
Kvistad, Kjell A. ;
Bathen, Tone F. ;
Axelson, David E. ;
Lundgren, Steinar ;
Gribbestad, Ingrid S. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2009, 29 (06) :1300-1307
[37]   Genomic profiling in locally advanced and inflammatory breast cancer and its link to DCE-MRI and overall survival [J].
Siamakpour-Reihani, Sharareh ;
Owzar, Kouros ;
Jiang, Chen ;
Scarbrough, Peter M. ;
Craciunescu, Oana I. ;
Horton, Janet K. ;
Dressman, Holly K. ;
Blackwell, Kimberly L. ;
Dewhirst, Mark W. .
INTERNATIONAL JOURNAL OF HYPERTHERMIA, 2015, 31 (04) :386-395
[38]   Integration of quantitative DCE-MRI and ADC mapping to monitor treatment response in human breast cancer: initial results [J].
Yankeelov, Thomas E. ;
Lepage, Martin ;
Chakravarthy, Anuradha ;
Broome, Elizabeth E. ;
Niermann, Kenneth J. ;
Kelley, Mark C. ;
Meszoely, Ingrid ;
Mayer, Ingrid A. ;
Herman, Cheryl R. ;
McManus, Kevin ;
Price, Ronald R. ;
Gore, John C. .
MAGNETIC RESONANCE IMAGING, 2007, 25 (01) :1-13
[39]   Breast cancer diagnosis in DCE-MRI using mixture ensemble of convolutional neural networks [J].
Rasti, Reza ;
Teshnehlab, Mohammad ;
Phung, Son Lam .
PATTERN RECOGNITION, 2017, 72 :381-390
[40]   Radiomic analysis of DCE-MRI for prediction of response to neoadjuvant chemotherapy in breast cancer patients [J].
Fan, Ming ;
Wu, Guolin ;
Cheng, Hu ;
Zhang, Juan ;
Shao, Guoliang ;
Li, Lihua .
EUROPEAN JOURNAL OF RADIOLOGY, 2017, 94 :140-147