Temporal Sampling Requirements for Reference Region Modeling of DCE-MRI Data in Human Breast Cancer

被引:33
作者
Planey, Catherine R. [2 ]
Welch, E. Brian [3 ]
Xu, Lei [4 ]
Chakravarthy, A. Bapsi [5 ]
Gatenby, J. Christopher [6 ]
Freehardt, Darla [7 ]
Mayer, Ingrid [7 ]
Meszeoly, Ingrid [8 ]
Kelley, Mark [8 ]
Means-Powell, Julie [8 ]
Gore, John C. [6 ,9 ,10 ,11 ]
Yankeelov, Thomas E. [1 ,9 ,10 ,12 ]
机构
[1] Vanderbilt Univ, Med Ctr, Inst Imaging Sci, Nashville, TN 37232 USA
[2] Yale Univ, Dept Biomed Engn, New Haven, CT USA
[3] Philips Healthcare, MR Clin Sci, Cleveland, OH USA
[4] Vanderbilt Univ, Dept Biostat, Nashville, TN 37232 USA
[5] Vanderbilt Univ, Dept Radiat Oncol, Nashville, TN 37232 USA
[6] Vanderbilt Univ, Dept Radiol & Radiol Sci, Nashville, TN 37232 USA
[7] Vanderbilt Univ, Dept Oncol, Nashville, TN 37232 USA
[8] Vanderbilt Univ, Dept Surg Oncol, Nashville, TN 37232 USA
[9] Vanderbilt Univ, Dept Biomed Engn, Nashville, TN 37232 USA
[10] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37232 USA
[11] Vanderbilt Univ, Dept Mol Physiol & Biophys, Nashville, TN 37232 USA
[12] Vanderbilt Univ, Dept Canc Biol, Nashville, TN 37232 USA
基金
美国国家卫生研究院;
关键词
DCE-MRI; breast cancer; temporal sampling; pharmacokinetics; CONTRAST-ENHANCED MRI; ARTERIAL INPUT FUNCTION; TRANSCYTOLEMMAL WATER EXCHANGE; RESONANCE-IMAGING MEASUREMENTS; HIGH FAMILIAL RISK; NEOADJUVANT CHEMOTHERAPY; PHARMACOKINETIC ANALYSIS; REFERENCE TISSUES; TRACER KINETICS; BOLUS INJECTION;
D O I
10.1002/jmri.21812
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To assess the temporal sampling requirements needed for quantitative analysis of dynamic contrast-enhanced MRI (DCE-MRI) data with a reference region (RR) model in human breast cancer. Materials and Methods: Simulations were used to study errors in pharmacokinetic parameters (K-trans and upsilon(e)) estimated by the RR model using six DCE-MRI acquisitions over a range of pharmacokinetic parameter values, arterial input functions, and temporal samplings. DCE-MRI data were acquired on 12 breast cancer patients and parameters were estimated using the native resolution data (16.4 seconds) and compared to downsampled 32.8-second and 65.6-second data. Results: Simulations show that, in the majority of parameter combinations, the RR model results in an error less than 20% in the extracted parameters with temporal sampling as poor as 35.6 seconds. The experimental results show a high correlation between K-trans and upsilon(e) estimates from data acquired at 16.4-second temporal resolution compared to the downsampled 32.8-second data: the slope of the regression line was 1.025 (95% confidence interval [CI]: 1.021, 1.029). Pearson's correlation r = 0.943 (95% CI: 0.940, 0.945) for K-trans and 1.023 (95% CI: 1.021. 1.025), r = 0.979 (95% CI: 0.978, 0.980) for upsilon(e). For the 64-second temporal resolution data the results were: 0.890 (95% CI: 0.894, 0.905), r = 0.8645, (95% CI: 0.858, 0.871) for K-trans, and 1.041 (95% Cl: 1.039, 1.043), r = 0.970 (95% Cl: 0.968, 0.971) for upsilon(e). Conclusion: RR analysis allows for a significant reduction in temporal sampling requirements and this lends itself to analyze DCE-MRI data acquired in practical situations.
引用
收藏
页码:121 / 134
页数:14
相关论文
共 50 条
[21]   Repeatability of a reference region model for analysis of murine DCE-MRI data at 7T [J].
Yankeelov, Thomas E. ;
DeBusk, Laura M. ;
Billheimer, D. Dean ;
Luci, Jeffrey J. ;
Lin, P. Charles ;
Price, Ronald R. ;
Gore, John C. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2006, 24 (05) :1140-1147
[22]   Analysis of DCE-MRI for Early Prediction of Breast Cancer Therapy Response [J].
Machireddy, Archana ;
Thibault, Guillaume ;
Huang, Wei ;
Song, Xubo .
2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, :682-685
[23]   Analysis of DCE-MRI Features in Tumor for Prediction of the Prognosis in Breast Cancer [J].
Liu, Bin ;
Fan, Ming ;
Zheng, Shuo ;
Li, Lihua .
MEDICAL IMAGING 2019: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2019, 10954
[24]   The Influence of Temporal Resolution in Determining Pharmacokinetic Parameters From DCE-MRI Data [J].
Heisen, Marieke ;
Fan, Xiaobing ;
Buurman, Johannes ;
van Riel, Natal A. W. ;
Karczmar, Gregory S. ;
Romeny, Bart M. ter Haar .
MAGNETIC RESONANCE IN MEDICINE, 2010, 63 (03) :811-816
[25]   Study of onset time-shift and injection duration in DCE-MRI: a comparison of a reference region model with the general kinetic model [J].
Hsiao, Ing-Tsung ;
Liao, Yen-Peng ;
Liu, Ho-Ling .
NMR IN BIOMEDICINE, 2010, 23 (04) :375-381
[26]   Early Prediction of Breast Cancer Therapy Response using Multiresolution Fractal Analysis of DCE-MRI Parametric Maps [J].
Machireddy, Archana ;
Thibault, Guillaume ;
Tudorica, Alina ;
Afzal, Aneela ;
Mishal, May ;
Kemmer, Kathleen ;
Naik, Arpana ;
Troxell, Megan ;
Goranson, Eric ;
Oh, Karen ;
Roy, Nicole ;
Jafarian, Neda ;
Holtorf, Megan ;
Huang, Wei ;
Song, Xubo .
TOMOGRAPHY, 2019, 5 (01) :90-98
[27]   DCE-MRI Data Analysis for Cancer Area Classification [J].
Castellani, U. ;
Cristani, M. ;
Daducci, A. ;
Farace, P. ;
Marzola, P. ;
Murino, V. ;
Sbarbati, A. .
METHODS OF INFORMATION IN MEDICINE, 2009, 48 (03) :248-253
[28]   A visual analytics approach to diagnosis of breast DCE-MRI data [J].
Glasser, Sylvia ;
Preim, Uta ;
Toennies, Klaus ;
Preim, Bernhard .
COMPUTERS & GRAPHICS-UK, 2010, 34 (05) :602-611
[29]   Ultrafast Bilateral DCE-MRI of the Breast with Conventional Fourier Sampling: Preliminary Evaluation of Semi-quantitative Analysis [J].
Pineda, Federico D. ;
Medved, Milica ;
Wang, Shiyang ;
Fan, Xiaobing ;
Schacht, David V. ;
Sennett, Charlene ;
Oto, Aytekin ;
Newstead, Gillian M. ;
Abe, Hiroyuki ;
Karczmar, Gregory S. .
ACADEMIC RADIOLOGY, 2016, 23 (09) :1137-1144
[30]   Quantitative DCE-MRI prediction of breast cancer recurrence following neoadjuvant chemotherapy: a preliminary study [J].
Thawani, Rajat ;
Gao, Lina ;
Mohinani, Ajay ;
Tudorica, Alina ;
Li, Xin ;
Mitri, Zahi ;
Huang, Wei .
BMC MEDICAL IMAGING, 2022, 22 (01)