Temporal Sampling Requirements for Reference Region Modeling of DCE-MRI Data in Human Breast Cancer

被引:31
作者
Planey, Catherine R. [2 ]
Welch, E. Brian [3 ]
Xu, Lei [4 ]
Chakravarthy, A. Bapsi [5 ]
Gatenby, J. Christopher [6 ]
Freehardt, Darla [7 ]
Mayer, Ingrid [7 ]
Meszeoly, Ingrid [8 ]
Kelley, Mark [8 ]
Means-Powell, Julie [8 ]
Gore, John C. [6 ,9 ,10 ,11 ]
Yankeelov, Thomas E. [1 ,9 ,10 ,12 ]
机构
[1] Vanderbilt Univ, Med Ctr, Inst Imaging Sci, Nashville, TN 37232 USA
[2] Yale Univ, Dept Biomed Engn, New Haven, CT USA
[3] Philips Healthcare, MR Clin Sci, Cleveland, OH USA
[4] Vanderbilt Univ, Dept Biostat, Nashville, TN 37232 USA
[5] Vanderbilt Univ, Dept Radiat Oncol, Nashville, TN 37232 USA
[6] Vanderbilt Univ, Dept Radiol & Radiol Sci, Nashville, TN 37232 USA
[7] Vanderbilt Univ, Dept Oncol, Nashville, TN 37232 USA
[8] Vanderbilt Univ, Dept Surg Oncol, Nashville, TN 37232 USA
[9] Vanderbilt Univ, Dept Biomed Engn, Nashville, TN 37232 USA
[10] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37232 USA
[11] Vanderbilt Univ, Dept Mol Physiol & Biophys, Nashville, TN 37232 USA
[12] Vanderbilt Univ, Dept Canc Biol, Nashville, TN 37232 USA
基金
美国国家卫生研究院;
关键词
DCE-MRI; breast cancer; temporal sampling; pharmacokinetics; CONTRAST-ENHANCED MRI; ARTERIAL INPUT FUNCTION; TRANSCYTOLEMMAL WATER EXCHANGE; RESONANCE-IMAGING MEASUREMENTS; HIGH FAMILIAL RISK; NEOADJUVANT CHEMOTHERAPY; PHARMACOKINETIC ANALYSIS; REFERENCE TISSUES; TRACER KINETICS; BOLUS INJECTION;
D O I
10.1002/jmri.21812
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To assess the temporal sampling requirements needed for quantitative analysis of dynamic contrast-enhanced MRI (DCE-MRI) data with a reference region (RR) model in human breast cancer. Materials and Methods: Simulations were used to study errors in pharmacokinetic parameters (K-trans and upsilon(e)) estimated by the RR model using six DCE-MRI acquisitions over a range of pharmacokinetic parameter values, arterial input functions, and temporal samplings. DCE-MRI data were acquired on 12 breast cancer patients and parameters were estimated using the native resolution data (16.4 seconds) and compared to downsampled 32.8-second and 65.6-second data. Results: Simulations show that, in the majority of parameter combinations, the RR model results in an error less than 20% in the extracted parameters with temporal sampling as poor as 35.6 seconds. The experimental results show a high correlation between K-trans and upsilon(e) estimates from data acquired at 16.4-second temporal resolution compared to the downsampled 32.8-second data: the slope of the regression line was 1.025 (95% confidence interval [CI]: 1.021, 1.029). Pearson's correlation r = 0.943 (95% CI: 0.940, 0.945) for K-trans and 1.023 (95% CI: 1.021. 1.025), r = 0.979 (95% CI: 0.978, 0.980) for upsilon(e). For the 64-second temporal resolution data the results were: 0.890 (95% CI: 0.894, 0.905), r = 0.8645, (95% CI: 0.858, 0.871) for K-trans, and 1.041 (95% Cl: 1.039, 1.043), r = 0.970 (95% Cl: 0.968, 0.971) for upsilon(e). Conclusion: RR analysis allows for a significant reduction in temporal sampling requirements and this lends itself to analyze DCE-MRI data acquired in practical situations.
引用
收藏
页码:121 / 134
页数:14
相关论文
共 50 条
  • [21] Repeatability of a reference region model for analysis of murine DCE-MRI data at 7T
    Yankeelov, Thomas E.
    DeBusk, Laura M.
    Billheimer, D. Dean
    Luci, Jeffrey J.
    Lin, P. Charles
    Price, Ronald R.
    Gore, John C.
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2006, 24 (05) : 1140 - 1147
  • [22] Analysis of DCE-MRI for Early Prediction of Breast Cancer Therapy Response
    Machireddy, Archana
    Thibault, Guillaume
    Huang, Wei
    Song, Xubo
    [J]. 2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 682 - 685
  • [23] Analysis of DCE-MRI Features in Tumor for Prediction of the Prognosis in Breast Cancer
    Liu, Bin
    Fan, Ming
    Zheng, Shuo
    Li, Lihua
    [J]. MEDICAL IMAGING 2019: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2019, 10954
  • [24] The Influence of Temporal Resolution in Determining Pharmacokinetic Parameters From DCE-MRI Data
    Heisen, Marieke
    Fan, Xiaobing
    Buurman, Johannes
    van Riel, Natal A. W.
    Karczmar, Gregory S.
    Romeny, Bart M. ter Haar
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2010, 63 (03) : 811 - 816
  • [25] Early Prediction of Breast Cancer Therapy Response using Multiresolution Fractal Analysis of DCE-MRI Parametric Maps
    Machireddy, Archana
    Thibault, Guillaume
    Tudorica, Alina
    Afzal, Aneela
    Mishal, May
    Kemmer, Kathleen
    Naik, Arpana
    Troxell, Megan
    Goranson, Eric
    Oh, Karen
    Roy, Nicole
    Jafarian, Neda
    Holtorf, Megan
    Huang, Wei
    Song, Xubo
    [J]. TOMOGRAPHY, 2019, 5 (01) : 90 - 98
  • [26] Study of onset time-shift and injection duration in DCE-MRI: a comparison of a reference region model with the general kinetic model
    Hsiao, Ing-Tsung
    Liao, Yen-Peng
    Liu, Ho-Ling
    [J]. NMR IN BIOMEDICINE, 2010, 23 (04) : 375 - 381
  • [27] DCE-MRI Data Analysis for Cancer Area Classification
    Castellani, U.
    Cristani, M.
    Daducci, A.
    Farace, P.
    Marzola, P.
    Murino, V.
    Sbarbati, A.
    [J]. METHODS OF INFORMATION IN MEDICINE, 2009, 48 (03) : 248 - 253
  • [28] A visual analytics approach to diagnosis of breast DCE-MRI data
    Glasser, Sylvia
    Preim, Uta
    Toennies, Klaus
    Preim, Bernhard
    [J]. COMPUTERS & GRAPHICS-UK, 2010, 34 (05): : 602 - 611
  • [29] Ultrafast Bilateral DCE-MRI of the Breast with Conventional Fourier Sampling: Preliminary Evaluation of Semi-quantitative Analysis
    Pineda, Federico D.
    Medved, Milica
    Wang, Shiyang
    Fan, Xiaobing
    Schacht, David V.
    Sennett, Charlene
    Oto, Aytekin
    Newstead, Gillian M.
    Abe, Hiroyuki
    Karczmar, Gregory S.
    [J]. ACADEMIC RADIOLOGY, 2016, 23 (09) : 1137 - 1144
  • [30] Quantitative DCE-MRI prediction of breast cancer recurrence following neoadjuvant chemotherapy: a preliminary study
    Thawani, Rajat
    Gao, Lina
    Mohinani, Ajay
    Tudorica, Alina
    Li, Xin
    Mitri, Zahi
    Huang, Wei
    [J]. BMC MEDICAL IMAGING, 2022, 22 (01)