Temporal Sampling Requirements for Reference Region Modeling of DCE-MRI Data in Human Breast Cancer

被引:31
作者
Planey, Catherine R. [2 ]
Welch, E. Brian [3 ]
Xu, Lei [4 ]
Chakravarthy, A. Bapsi [5 ]
Gatenby, J. Christopher [6 ]
Freehardt, Darla [7 ]
Mayer, Ingrid [7 ]
Meszeoly, Ingrid [8 ]
Kelley, Mark [8 ]
Means-Powell, Julie [8 ]
Gore, John C. [6 ,9 ,10 ,11 ]
Yankeelov, Thomas E. [1 ,9 ,10 ,12 ]
机构
[1] Vanderbilt Univ, Med Ctr, Inst Imaging Sci, Nashville, TN 37232 USA
[2] Yale Univ, Dept Biomed Engn, New Haven, CT USA
[3] Philips Healthcare, MR Clin Sci, Cleveland, OH USA
[4] Vanderbilt Univ, Dept Biostat, Nashville, TN 37232 USA
[5] Vanderbilt Univ, Dept Radiat Oncol, Nashville, TN 37232 USA
[6] Vanderbilt Univ, Dept Radiol & Radiol Sci, Nashville, TN 37232 USA
[7] Vanderbilt Univ, Dept Oncol, Nashville, TN 37232 USA
[8] Vanderbilt Univ, Dept Surg Oncol, Nashville, TN 37232 USA
[9] Vanderbilt Univ, Dept Biomed Engn, Nashville, TN 37232 USA
[10] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37232 USA
[11] Vanderbilt Univ, Dept Mol Physiol & Biophys, Nashville, TN 37232 USA
[12] Vanderbilt Univ, Dept Canc Biol, Nashville, TN 37232 USA
基金
美国国家卫生研究院;
关键词
DCE-MRI; breast cancer; temporal sampling; pharmacokinetics; CONTRAST-ENHANCED MRI; ARTERIAL INPUT FUNCTION; TRANSCYTOLEMMAL WATER EXCHANGE; RESONANCE-IMAGING MEASUREMENTS; HIGH FAMILIAL RISK; NEOADJUVANT CHEMOTHERAPY; PHARMACOKINETIC ANALYSIS; REFERENCE TISSUES; TRACER KINETICS; BOLUS INJECTION;
D O I
10.1002/jmri.21812
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To assess the temporal sampling requirements needed for quantitative analysis of dynamic contrast-enhanced MRI (DCE-MRI) data with a reference region (RR) model in human breast cancer. Materials and Methods: Simulations were used to study errors in pharmacokinetic parameters (K-trans and upsilon(e)) estimated by the RR model using six DCE-MRI acquisitions over a range of pharmacokinetic parameter values, arterial input functions, and temporal samplings. DCE-MRI data were acquired on 12 breast cancer patients and parameters were estimated using the native resolution data (16.4 seconds) and compared to downsampled 32.8-second and 65.6-second data. Results: Simulations show that, in the majority of parameter combinations, the RR model results in an error less than 20% in the extracted parameters with temporal sampling as poor as 35.6 seconds. The experimental results show a high correlation between K-trans and upsilon(e) estimates from data acquired at 16.4-second temporal resolution compared to the downsampled 32.8-second data: the slope of the regression line was 1.025 (95% confidence interval [CI]: 1.021, 1.029). Pearson's correlation r = 0.943 (95% CI: 0.940, 0.945) for K-trans and 1.023 (95% CI: 1.021. 1.025), r = 0.979 (95% CI: 0.978, 0.980) for upsilon(e). For the 64-second temporal resolution data the results were: 0.890 (95% CI: 0.894, 0.905), r = 0.8645, (95% CI: 0.858, 0.871) for K-trans, and 1.041 (95% Cl: 1.039, 1.043), r = 0.970 (95% Cl: 0.968, 0.971) for upsilon(e). Conclusion: RR analysis allows for a significant reduction in temporal sampling requirements and this lends itself to analyze DCE-MRI data acquired in practical situations.
引用
收藏
页码:121 / 134
页数:14
相关论文
共 50 条
  • [1] A linear algorithm of the reference region model for DCE-MRI is robust and relaxes requirements for temporal resolution
    Cardenas-Rodriguez, Julio
    Howison, Christine M.
    Pagel, Mark D.
    MAGNETIC RESONANCE IMAGING, 2013, 31 (04) : 497 - 507
  • [2] An extended reference region model for DCE-MRI that accounts for plasma volume
    Ahmed, Zaki
    Levesque, Ives R.
    NMR IN BIOMEDICINE, 2018, 31 (07)
  • [3] Spatiotemporal features of DCE-MRI for breast cancer diagnosis
    Banaie, Masood
    Soltanian-Zadeh, Hamid
    Saligheh-Rad, Hamid-Reza
    Gity, Masoumeh
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 155 : 153 - 164
  • [4] Temporal Resolution and SNR Requirements for Accurate DCE-MRI Data Analysis Using the AATH Model
    Kershaw, Lucy E.
    Cheng, Hai-Ling Margaret
    MAGNETIC RESONANCE IN MEDICINE, 2010, 64 (06) : 1772 - 1780
  • [5] The effect of temporal sampling on quantitative pharmacokinetic and three-time-point analysis of breast DCE-MRI
    Fluckiger, Jacob U.
    Schabel, Matthias C.
    DiBella, Edward V. R.
    MAGNETIC RESONANCE IMAGING, 2012, 30 (07) : 934 - 943
  • [6] Blind deconvolution decreases requirements on temporal resolution of DCE-MRI: Application to 2nd generation pharmacokinetic modeling
    Kratochvila, Jiri
    Jir, Radovan
    Bartos, Michal
    Standara, Michal
    Starcuk Jr, Zenon
    Taxt, Torfinn
    MAGNETIC RESONANCE IMAGING, 2024, 109 : 238 - 248
  • [7] Comparison of analytical and numerical analysis of the reference region model for DCE-MRI
    Lee, Joonsang
    Cardenas-Rodriguez, Julio
    Pagel, Mark D.
    Platt, Simon
    Kent, Marc
    Zhao, Quri
    MAGNETIC RESONANCE IMAGING, 2014, 32 (07) : 845 - 853
  • [8] Breast cancer classification with mammography and DCE-MRI
    Yuan, Yading
    Giger, Maryellen L.
    Li, Hui
    Sennett, Charlene
    MEDICAL IMAGING 2009: COMPUTER-AIDED DIAGNOSIS, 2009, 7260
  • [9] Quantitative pharmacokinetic analysis of DCE-MRI data without an arterial input function: a reference region model
    Yankeelov, TE
    Luci, JJ
    Lepage, M
    Li, R
    Debusk, L
    Lin, PC
    Price, RR
    Gore, JC
    MAGNETIC RESONANCE IMAGING, 2005, 23 (04) : 519 - 529
  • [10] DCE-MRI Texture Features for Early Prediction of Breast Cancer Therapy Response
    Thibault, Guillaume
    Tudorica, Alina
    Afzal, Aneela
    Chui, Stephen Y-C
    Naik, Arpana
    Troxell, Megan L.
    Kemmer, Kathleen A.
    Oh, Karen Y.
    Roy, Nicole
    Jafarian, Neda
    Holtorf, Megan L.
    Huang, Wei
    Song, Xubo
    TOMOGRAPHY, 2017, 3 (01) : 23 - 32