Lie symmetries of soliton equations with self-consistent sources via source generation procedure

被引:3
作者
Hu, Juan [1 ,2 ]
Qian, Xian-Min [3 ]
Tam, Hon-Wah [4 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, LSEC, Inst Computat Math & Sci Engn Comp, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100190, Peoples R China
[3] Shaoxing Coll Arts & Sci, Dept Phys, Shaoxing 312000, Peoples R China
[4] Hong Kong Baptist Univ, Dept Comp Sci, Kowloon Tong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
KP equation; Sawada-Kotera (SK) equation; Differential-difference KP equation; Lie symmetries; Self-consistent sources; Source generation procedure; KADOMTSEV-PETVIASHVILI EQUATION; KORTEWEG-DEVRIES EQUATION; SINGULAR DISPERSION-LAWS; DIFFERENCE KP EQUATION; BKP EQUATIONS; NONLINEAR EVOLUTIONS; SYSTEMS; INTEGRATION; ALGEBRA; WAVES;
D O I
10.1016/j.jmaa.2009.03.070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the 'source generation' procedure (SGP) proposed by Hu and Wang [X.B. Hu, H.Y. Wang, Construction of dKP and BKP equation with self-consistent Sources, Inverse Problems 22 (2006) 1903-1920] is utilized to derive Lie symmetries of bilinear soliton equations with self-consistent sources (SESCS) such as KPESCS, BKPESCS. and differential-difference KPESCS. Furthermore, it is shown that these Lie symmetries constitute generators of the corresponding Lie symmetry algebras. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:201 / 213
页数:13
相关论文
共 46 条
[1]  
[Anonymous], 1986, APPL LIE GROUP DIFFE, DOI DOI 10.1007/978-1-4684-0274-2
[2]  
BLUMAN QW, 1989, SYMMETRIES DIFFERENT
[3]   NONLINEAR RESONANT SCATTERING AND PLASMA INSTABILITY - AN INTEGRABLE MODEL [J].
CLAUDE, C ;
LATIFI, A ;
LEON, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (12) :3321-3330
[4]   METHOD FOR GENERATING DISCRETE SOLITON-EQUATIONS .1. [J].
DATE, E ;
JINBO, M ;
MIWA, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1982, 51 (12) :4116-4124
[5]   SYMMETRY REDUCTION FOR THE KADOMTSEV-PETVIASHVILI EQUATION USING A LOOP ALGEBRA [J].
DAVID, D ;
KAMRAN, N ;
LEVI, D ;
WINTERNITZ, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (05) :1225-1237
[6]   The multisoliton solutions of the KP equation with self-consistent sources [J].
Deng, SF ;
Chen, DY ;
Zhang, DJ .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2003, 72 (09) :2184-2192
[7]  
DOKROROV EV, 1993, OPT ACTA, V30, P223
[8]   NONLINEAR EVOLUTIONS WITH SINGULAR DISPERSION-LAWS ASSOCIATED WITH A QUADRATIC BUNDLE [J].
DOKTOROV, EV ;
SHCHESNOVICH, VS .
PHYSICS LETTERS A, 1995, 207 (3-4) :153-158
[9]   Integrability of a differential-difference KP equation with self-consistent sources [J].
Gegenhasi ;
Hu, Xing-Biao .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2007, 74 (2-3) :145-158
[10]   SYMMETRIES OF (2+1)-DIMENSIONAL KDV-ITO EQUATION IN THE BILINEAR FORM [J].
HAN, P ;
LOU, SY .
COMMUNICATIONS IN THEORETICAL PHYSICS, 1994, 22 (04) :437-442