Thermodynamic entropy and chaos in a discrete hydrodynamical system

被引:12
作者
Bagnoli, Franco [1 ]
Rechtman, Raul [2 ]
机构
[1] Univ Firenze, Dipartimento Energet, I-50139 Florence, Italy
[2] Univ Nacl Autonoma Mexico, Ctr Invest Energia, Temixco 62580, Morelos, Mexico
来源
PHYSICAL REVIEW E | 2009年 / 79卷 / 04期
关键词
cellular automata; chaos; entropy; hydrodynamics; irreversible thermodynamics; lattice gas; Lyapunov methods; nonlinear dynamical systems; KOLMOGOROV-SINAI ENTROPY; LYAPUNOV EXPONENTS; MULTIBAKER MAP; LATTICE; MODEL;
D O I
10.1103/PhysRevE.79.041115
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We show that the thermodynamic entropy density is proportional to the largest Lyapunov exponent (LLE) of a discrete hydrodynamical system, a deterministic two-dimensional lattice gas automaton. The definition of the LLE for cellular automata is based on the concept of Boolean derivatives and is formally equivalent to that of continuous dynamical systems. This relation is justified using a Markovian model. In an irreversible process with an initial density difference between both halves of the system, we find that Boltzmann's H function is linearly related to the expansion factor of the LLE although the latter is more sensitive to the presence of traveling waves.
引用
收藏
页数:6
相关论文
共 32 条
[1]  
[Anonymous], 2008, STAT MECH NONEQUILIB
[2]  
[Anonymous], 1993, CHAOS DYNAMICAL SYST
[3]  
BAGNOLI F, 1993, REV MEX FIS, V39, P763
[4]  
Bagnoli F., 1992, International Journal of Modern Physics C (Physics and Computers), V3, P307, DOI 10.1142/S0129183192000257
[5]  
BAGNOLI F, 1994, LECT THERMODYNAMICS, P200
[6]  
Billingsley P., 1965, ERGODIC THEORY INFOR
[7]   A LATTICE GAS-MODEL WITH TEMPERATURE [J].
CHEN, S ;
LEE, M ;
ZHAO, KH ;
DOOLEN, GD .
PHYSICA D, 1989, 37 (1-3) :42-59
[8]  
Cornfeld IP, 1982, Ergodic Theory
[9]   Goldstone modes in Lyapunov spectra of hard sphere systems [J].
De Wijn, Astrid S. ;
Van Beijeren, Henk .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2004, 70 (1 2) :016207-1
[10]  
Dorfman J. R., 1999, An Introduction to Chaos in Non-Equilibrium Statistical Mechanics