Thermal Characterization of Low-Dimensional Materials by Resistance Thermometers

被引:7
作者
Fu, Yifeng [1 ]
Cui, Guofeng [2 ]
Jeppson, Kjell [1 ]
机构
[1] Chalmers Univ Technol, Dept Microtechnol & Nanosci, Elect Mat & Syst Lab, SE-41296 Gothenburg, Sweden
[2] Sun Yat Sen Univ, Key Lab Low Carbon Chem & Energy Conservat Guangd, Mat Sci Inst,Sch Chem, Key Lab Polymer Composite & Funct Mat,Minist Educ, Guangzhou 510275, Guangdong, Peoples R China
基金
欧盟地平线“2020”; 美国国家科学基金会;
关键词
thermal characterization; resistance temperature detector; heat spreader; carbon nanotube; graphene; boron nitride; CARBON NANOTUBES; INTERFACE MATERIALS; GRAPHENE; CONDUCTIVITY; COMPOSITES; MANAGEMENT; FUNCTIONALIZATION; NANOCOMPOSITES; PERFORMANCE; STRENGTH;
D O I
10.3390/ma12111740
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The design, fabrication, and use of a hotspot-producing and temperature-sensing resistance thermometer for evaluating the thermal properties of low-dimensional materials are described in this paper. The materials that are characterized include one-dimensional (1D) carbon nanotubes, and two-dimensional (2D) graphene and boron nitride films. The excellent thermal performance of these materials shows great potential for cooling electronic devices and systems such as in three-dimensional (3D) integrated chip-stacks, power amplifiers, and light-emitting diodes. The thermometers are designed to be serpentine-shaped platinum resistors serving both as hotspots and temperature sensors. By using these thermometers, the thermal performance of the abovementioned emerging low-dimensional materials was evaluated with high accuracy.
引用
收藏
页数:15
相关论文
共 48 条
[1]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[2]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[3]   Two-dimensional hexagonal boron nitride as lateral heat spreader in electrically insulating packaging [J].
Bao, Jie ;
Edwards, Michael ;
Huang, Shirong ;
Zhang, Yong ;
Fu, Yifeng ;
Lu, Xiuzhen ;
Yuan, Zhichao ;
Jeppson, Kjell ;
Liu, Johan .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (26)
[4]  
[鲍婕 Bao Jie], 2016, [应用基础与工程科学学报, Journal of Basic Science and Engineering], V24, P210
[5]   Synthesis and Applications of Two-Dimensional Hexagonal Boron Nitride in Electronics Manufacturing [J].
Bao, Jie ;
Jeppson, Kjell ;
Edwards, Michael ;
Fu, Yifeng ;
Ye, Lilei ;
Lu, Xiuzhen ;
Liu, Johan .
ELECTRONIC MATERIALS LETTERS, 2016, 12 (01) :1-16
[6]   Carbon nanotube composites for thermal management [J].
Biercuk, MJ ;
Llaguno, MC ;
Radosavljevic, M ;
Hyun, JK ;
Johnson, AT ;
Fischer, JE .
APPLIED PHYSICS LETTERS, 2002, 80 (15) :2767-2769
[7]   Thermal contact resistance between graphene and silicon dioxide [J].
Chen, Z. ;
Jang, W. ;
Bao, W. ;
Lau, C. N. ;
Dames, C. .
APPLIED PHYSICS LETTERS, 2009, 95 (16)
[8]   Large Reduction of Hot Spot Temperature in Graphene Electronic Devices with Heat-Spreading Hexagonal Boron Nitride [J].
Choi, David ;
Poudel, Nirakar ;
Park, Saungeun ;
Akinwande, Deji ;
Cronin, Stephen B. ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Yao, Zhen ;
Shi, Li .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (13) :11101-11107
[9]   A metallization and bonding approach for high performance carbon nanotube thermal interface materials [J].
Cross, Robert ;
Cola, Baratunde A. ;
Fisher, Timothy ;
Xu, Xianfan ;
Gall, Ken ;
Graham, Samuel .
NANOTECHNOLOGY, 2010, 21 (44)
[10]   Thick film patterning by lift-off process using double-coated single photoresists [J].
Fu, Yifeng ;
Ye, Li-Lei ;
Liu, Johan .
MATERIALS LETTERS, 2012, 76 :117-119