Analysing multi-level Monte Carlo for options with non-globally Lipschitz payoff

被引:52
作者
Giles, Michael B. [2 ,3 ]
Higham, Desmond J. [1 ]
Mao, Xuerong [4 ]
机构
[1] Univ Strathclyde, Dept Math, Glasgow G1 1XH, Lanark, Scotland
[2] Univ Oxford, Math Inst, Oxford OX1 3LB, England
[3] Univ Oxford, Oxford Man Inst Quantitat Finance, Oxford OX1 3LB, England
[4] Univ Strathclyde, Dept Stat & Modelling Sci, Glasgow G1 1XH, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Barrier option; Complexity; Digital option; Euler-Maruyama; Lookback option; Path-dependent option; Statistical error; Strong error; Weak error;
D O I
10.1007/s00780-009-0092-1
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Giles (Oper. Res. 56:607-617, 2008) introduced a multi-level Monte Carlo method for approximating the expected value of a function of a stochastic differential equation solution. A key application is to compute the expected payoff of a financial option. This new method improves on the computational complexity of standard Monte Carlo. Giles analysed globally Lipschitz payoffs, but also found good performance in practice for non-globally Lipschitz cases. In this work, we show that the multi-level Monte Carlo method can be rigorously justified for non-globally Lipschitz payoffs. In particular, we consider digital, lookback and barrier options. This requires non-standard strong convergence analysis of the Euler-Maruyama method.
引用
收藏
页码:403 / 413
页数:11
相关论文
共 11 条
[1]  
[Anonymous], 2007, STOCHASTIC DIFFERENT
[2]   On irregular functionals of SDEs and the Euler scheme [J].
Avikainen, Rainer .
FINANCE AND STOCHASTICS, 2009, 13 (03) :381-401
[3]   The law of the Euler scheme for stochastic differential equations .1. Convergence rate of the distribution function [J].
Bally, V ;
Talay, D .
PROBABILITY THEORY AND RELATED FIELDS, 1996, 104 (01) :43-60
[4]   BLACK'S CONSOL RATE CONJECTURE [J].
Duffie, Darrell ;
Ma, Jin ;
Yong, Jiongmin .
ANNALS OF APPLIED PROBABILITY, 1995, 5 (02) :356-382
[5]   Multilevel Monte Carlo path simulation [J].
Giles, Michael B. .
OPERATIONS RESEARCH, 2008, 56 (03) :607-617
[6]  
Glasserman P, 2004, Monte Carlo Methods in Financial Engineering
[7]  
Gobet E, 2007, LECT NOTES MATH, V1899, P355
[8]  
Higham Desmond., 2004, INTRO FINANCIAL OPTI, DOI [10.1017/CBO9780511800948, DOI 10.1017/CBO9780511800948]
[9]  
Hull J. C., 2014, Options, Futures, and Other Derivatives
[10]  
Kloeden P. E., 1999, NUMERICAL SOLUION ST, DOI DOI 10.1007/978-3-662-12616-5