Analysing multi-level Monte Carlo for options with non-globally Lipschitz payoff

被引:51
作者
Giles, Michael B. [2 ,3 ]
Higham, Desmond J. [1 ]
Mao, Xuerong [4 ]
机构
[1] Univ Strathclyde, Dept Math, Glasgow G1 1XH, Lanark, Scotland
[2] Univ Oxford, Math Inst, Oxford OX1 3LB, England
[3] Univ Oxford, Oxford Man Inst Quantitat Finance, Oxford OX1 3LB, England
[4] Univ Strathclyde, Dept Stat & Modelling Sci, Glasgow G1 1XH, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Barrier option; Complexity; Digital option; Euler-Maruyama; Lookback option; Path-dependent option; Statistical error; Strong error; Weak error;
D O I
10.1007/s00780-009-0092-1
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Giles (Oper. Res. 56:607-617, 2008) introduced a multi-level Monte Carlo method for approximating the expected value of a function of a stochastic differential equation solution. A key application is to compute the expected payoff of a financial option. This new method improves on the computational complexity of standard Monte Carlo. Giles analysed globally Lipschitz payoffs, but also found good performance in practice for non-globally Lipschitz cases. In this work, we show that the multi-level Monte Carlo method can be rigorously justified for non-globally Lipschitz payoffs. In particular, we consider digital, lookback and barrier options. This requires non-standard strong convergence analysis of the Euler-Maruyama method.
引用
收藏
页码:403 / 413
页数:11
相关论文
共 11 条
  • [1] [Anonymous], 2007, STOCHASTIC DIFFERENT
  • [2] On irregular functionals of SDEs and the Euler scheme
    Avikainen, Rainer
    [J]. FINANCE AND STOCHASTICS, 2009, 13 (03) : 381 - 401
  • [3] The law of the Euler scheme for stochastic differential equations .1. Convergence rate of the distribution function
    Bally, V
    Talay, D
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 1996, 104 (01) : 43 - 60
  • [4] BLACK'S CONSOL RATE CONJECTURE
    Duffie, Darrell
    Ma, Jin
    Yong, Jiongmin
    [J]. ANNALS OF APPLIED PROBABILITY, 1995, 5 (02) : 356 - 382
  • [5] Multilevel Monte Carlo path simulation
    Giles, Michael B.
    [J]. OPERATIONS RESEARCH, 2008, 56 (03) : 607 - 617
  • [6] Glasserman P, 2004, Monte Carlo Methods in Financial Engineering
  • [7] Gobet E, 2007, LECT NOTES MATH, V1899, P355
  • [8] Higham Desmond., 2004, INTRO FINANCIAL OPTI, DOI [10.1017/CBO9780511800948, DOI 10.1017/CBO9780511800948]
  • [9] Hull J. C., 2014, Options, Futures, and Other Derivatives
  • [10] Kloeden P. E., 1999, NUMERICAL SOLUION ST, DOI DOI 10.1007/978-3-662-12616-5