Networking brainstem and basal ganglia circuits for movement

被引:107
作者
Arber, Silvia [1 ,2 ]
Costa, Rui M. [3 ]
机构
[1] Univ Basel, Biozentrum, Basel, Switzerland
[2] Friedrich Miescher Inst Biomed Res, Basel, Switzerland
[3] Columbia Univ, Zuckerman Mind Brain Behav Inst, New York, NY 10027 USA
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
NIGRA PARS RETICULATA; MOTOR CORTEX; CORTICOSTRIATAL PLASTICITY; OCULOMOTOR FUNCTIONS; PATTERN GENERATION; ACTION INITIATION; SUBSTANTIA-NIGRA; GABAERGIC OUTPUT; LOCOMOTOR SPEED; PATHWAYS;
D O I
10.1038/s41583-022-00581-w
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The execution and learning of diverse movements involve neuronal networks distributed throughout the nervous system. The brainstem and basal ganglia are key for processing motor information. Both harbour functionally specialized populations stratified on the basis of axonal projections, synaptic inputs and gene expression, revealing a correspondence between circuit anatomy and function at a high level of granularity. Neuronal populations within both structures form multistep processing chains dedicated to the execution of specific movements; however, the connectivity and communication between these two structures is only just beginning to be revealed. The brainstem and basal ganglia are also embedded into wider networks and into systems-level loops. Important networking components include broadcasting neurons in the cortex, cerebellar output neurons and midbrain dopaminergic neurons. Action-specific circuits can be enhanced, vetoed, work in synergy or competition with others, or undergo plasticity to allow adaptive behaviour. We propose that this highly specific organization of circuits in the motor system is a core ingredient for supporting behavioural specificity, and at the same time for providing an adequate substrate for behavioural flexibility. In this Review, Arber and Costa discuss the anatomical and functional specificity of circuitry essential for executing diverse body movements. They focus on specific neuronal populations in the brainstem and the basal ganglia, and the integration of these circuits into systems-level networks that afford flexibility and learning.
引用
收藏
页码:342 / 360
页数:19
相关论文
共 123 条
[1]   THE FUNCTIONAL-ANATOMY OF BASAL GANGLIA DISORDERS [J].
ALBIN, RL ;
YOUNG, AB ;
PENNEY, JB .
TRENDS IN NEUROSCIENCES, 1989, 12 (10) :366-375
[2]   MICROSTIMULATION OF THE PRIMATE NEOSTRIATUM .2. SOMATOTOPIC ORGANIZATION OF STRIATAL MICROEXCITABLE ZONES AND THEIR RELATION TO NEURONAL RESPONSE PROPERTIES [J].
ALEXANDER, GE ;
DELONG, MR .
JOURNAL OF NEUROPHYSIOLOGY, 1985, 53 (06) :1417-1430
[3]   PARALLEL ORGANIZATION OF FUNCTIONALLY SEGREGATED CIRCUITS LINKING BASAL GANGLIA AND CORTEX [J].
ALEXANDER, GE ;
DELONG, MR ;
STRICK, PL .
ANNUAL REVIEW OF NEUROSCIENCE, 1986, 9 :357-381
[4]   Separate Microcircuit Modules of Distinct V2a Interneurons and Motoneurons Control the Speed of Locomotion [J].
Ampatzis, Konstantinos ;
Song, Jianren ;
Ausborn, Jessica ;
El Manira, Abdeljabbar .
NEURON, 2014, 83 (04) :934-943
[5]   An open cortico-basal ganglia loop allows limbic control over motor output via the nigrothalamic pathway [J].
Aoki, Sho ;
Smith, Jared B. ;
Li, Hao ;
Yen, Xunyi ;
Igarashi, Masakazu ;
Coulon, Patrice ;
Wickens, Jeffery R. ;
Ruigrok, Tom J. H. ;
Jin, Xin .
ELIFE, 2019, 8
[6]   A Disynaptic Circuit in the Globus Pallidus Controls Locomotion Inhibition [J].
Aristieta, Asier ;
Barresi, Massimo ;
Lindi, Shiva Azizpour ;
Barriere, Gregory ;
Courtand, Gilles ;
de la Cromp, Brice ;
Guilhemsang, Lise ;
Gauthier, Sophie ;
Fioramonti, Stephanie ;
Baufreton, Jerome ;
Mallet, Nicolas P. .
CURRENT BIOLOGY, 2021, 31 (04) :707-+
[7]   Neural reinforcement: re-entering and refining neural dynamics leading to desirable outcomes [J].
Athalye, Vivek R. ;
Carmena, Jose M. ;
Costa, Rui M. .
CURRENT OPINION IN NEUROBIOLOGY, 2020, 60 :145-154
[8]   Evidence for a neural law of effect [J].
Athalye, Vivek R. ;
Santos, Fernando J. ;
Carmena, Jose M. ;
Costa, Rui M. .
SCIENCE, 2018, 359 (6379) :1024-1029
[9]   Opponent regulation of action performance and timing by striatonigral and striatopallidal pathways [J].
Bakhurin, Konstantin, I ;
Li, Xiaoran ;
Friedman, Alexander D. ;
Lusk, Nicholas A. ;
Watson, Glenn D. R. ;
Kim, Namsoo ;
Yin, Henry H. .
ELIFE, 2020, 9
[10]   Comparative cellular analysis of motor cortex in human, marmoset and mouse [J].
Bakken, Trygve E. ;
Jorstad, Nikolas L. ;
Hu, Qiwen ;
Lake, Blue B. ;
Tian, Wei ;
Kalmbach, Brian E. ;
Crow, Megan ;
Hodge, Rebecca D. ;
Krienen, Fenna M. ;
Sorensen, Staci A. ;
Eggermont, Jeroen ;
Yao, Zizhen ;
Aevermann, Brian D. ;
Aldridge, Andrew I. ;
Bartlett, Anna ;
Bertagnolli, Darren ;
Casper, Tamara ;
Castanon, Rosa G. ;
Crichton, Kirsten ;
Daigle, Tanya L. ;
Dalley, Rachel ;
Dee, Nick ;
Dembrow, Nikolai ;
Diep, Dinh ;
Ding, Song-Lin ;
Dong, Weixiu ;
Fang, Rongxin ;
Fischer, Stephan ;
Goldman, Melissa ;
Goldy, Jeff ;
Graybuck, Lucas T. ;
Herb, Brian R. ;
Hou, Xiaomeng ;
Kancherla, Jayaram ;
Kroll, Matthew ;
Lathia, Kanan ;
van Lew, Baldur ;
Li, Yang Eric ;
Liu, Christine S. ;
Liu, Hanqing ;
Lucero, Jacinta D. ;
Mahurkar, Anup ;
McMillen, Delissa ;
Miller, Jeremy A. ;
Moussa, Marmar ;
Nery, Joseph R. ;
Nicovich, Philip R. ;
Niu, Sheng-Yong ;
Orvis, Joshua ;
Osteen, Julia K. .
NATURE, 2021, 598 (7879) :111-+