Comprehensive Integration of Single-Cell Data

被引:8947
作者
Stuart, Tim [1 ]
Butler, Andrew [1 ,2 ]
Hoffman, Paul [1 ]
Hafemeister, Christoph [1 ]
Papalexi, Efthymia [1 ,2 ]
Mauck, William M., III [1 ,2 ]
Hao, Yuhan [1 ,2 ]
Stoeckius, Marlon [3 ]
Smibert, Peter [3 ]
Satija, Rahul [1 ,2 ]
机构
[1] New York Genome Ctr, New York, NY 10013 USA
[2] NYU, Ctr Genom & Syst Biol, New York, NY 10003 USA
[3] New York Genome Ctr, Technol Innovat Lab, New York, NY USA
关键词
RNA-SEQ DATA; SPATIAL RECONSTRUCTION; SEQUENCING DATA; EXPRESSION; CLASSIFICATION; PREDICTION; EVOLUTION; ALIGNMENT; GENOMICS; ATLAS;
D O I
10.1016/j.cell.2019.05.031
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell transcriptomics has transformed our ability to characterize cell states, but deep biological understanding requires more than a taxonomic listing of clusters. As new methods arise to measure distinct cellular modalities, a key analytical challenge is to integrate these datasets to better understand cellular identity and function. Here, we develop a strategy to "anchor" diverse datasets together, enabling us to integrate single-cell measurements not only across scRNA-seq technologies, but also across different modalities. After demonstrating improvement over existing methods for integrating scRNA-seq data, we anchor scRNA-seq experiments with scATAC-seq to explore chromatin differences in closely related interneuron subsets and project protein expression measurements onto a bone marrow atlas to characterize lymphocyte populations. Lastly, we harmonize in situ gene expression and scRNA-seq datasets, allowing transcriptome-wide imputation of spatial gene expression patterns. Our work presents a strategy for the assembly of harmonized references and transfer of information across datasets.
引用
收藏
页码:1888 / +
页数:36
相关论文
共 98 条
[1]   High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin [J].
Achim, Kaia ;
Pettit, Jean-Baptiste ;
Saraiva, Luis R. ;
Gavriouchkina, Daria ;
Larsson, Tomas ;
Arendt, Detlev ;
Marioni, John C. .
NATURE BIOTECHNOLOGY, 2015, 33 (05) :503-U215
[2]   Whole-organism clone tracing using single-cell sequencing [J].
Alemany, Anna ;
Florescu, Maria ;
Baron, Chloe S. ;
Peterson-Maduro, Josi ;
van Oudenaarden, Alexander .
NATURE, 2018, 556 (7699) :108-+
[3]  
Allen Institute, 2018, ALL BRAIN DAT PORT
[4]  
[Anonymous], 2010, ANN: a library for approximate nearest neighbor searching
[5]   A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure [J].
Baron, Maayan ;
Veres, Adrian ;
Wolock, Samuel L. ;
Faust, Aubrey L. ;
Gaujoux, Renaud ;
Vetere, Amedeo ;
Ryu, Jennifer Hyoje ;
Wagner, Bridget K. ;
Shen-Orr, Shai S. ;
Klein, Allon M. ;
Melton, Douglas A. ;
Yanai, Itai .
CELL SYSTEMS, 2016, 3 (04) :346-+
[6]  
Benaglia T, 2009, J STAT SOFTW, V32, P1
[7]   Single-Cell Trajectory Detection Uncovers Progression and Regulatory Coordination in Human B Cell Development [J].
Bendall, Sean C. ;
Davis, Kara L. ;
Amir, El-ad David ;
Tadmor, Michelle D. ;
Simonds, Erin F. ;
Chen, Tiffany J. ;
Shenfeld, Daniel K. ;
Nolan, Garry P. ;
Pe'er, Dana .
CELL, 2014, 157 (03) :714-725
[8]  
Blitzer J, 2006, Proc. Of the Conference on Empirical Methods in Natural Language Processing, P120
[9]   Integrating single-cell transcriptomic data across different conditions, technologies, and species [J].
Butler, Andrew ;
Hoffman, Paul ;
Smibert, Peter ;
Papalexi, Efthymia ;
Satija, Rahul .
NATURE BIOTECHNOLOGY, 2018, 36 (05) :411-+
[10]  
Buttner M., Assessment of batch-correction methods for scRNA-seq data with a new test metric, DOI DOI 10.1101/200345