Explicit Barenblatt profiles for fractional porous medium equations

被引:24
作者
Huang, Yanghong [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
ASYMPTOTIC-BEHAVIOR; DIFFUSION;
D O I
10.1112/blms/bdu045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Several one-parameter families of explicit self-similar solutions are constructed for the porous medium equations (PMEs) with fractional operators. The corresponding self-similar profiles, also called Barenblatt profiles, have the same forms as those of the classic PMEs. These new exact solutions complement current theoretical analysis of the underlying equations and are expected to provide insights for further quantitative investigations.
引用
收藏
页码:857 / 869
页数:13
相关论文
共 23 条
[1]  
Andrews G.E., 1999, Encycl. Math. Appl., V71
[2]  
[Anonymous], 1993, GRADUATE TEXTS MATH
[3]  
[Anonymous], 1996, CAMBRIDGE TEXTS APPL
[4]  
[Anonymous], 2007, POROUS MEDIUM EQUATI
[5]  
[Anonymous], 2006, Smoothing and Decay Estimates for Nonlinear Diffusion Equations
[6]  
Biler P., 2013, ARXIV13027219
[7]   Barenblatt profiles for a nonlocal porous medium equation [J].
Biler, Piotr ;
Imbert, Cyril ;
Karch, Grzegorz .
COMPTES RENDUS MATHEMATIQUE, 2011, 349 (11-12) :641-645
[8]  
Bluman G.W., 2002, Appl. Math. Sci., V154
[9]   Quantitative local and global a priori estimates for fractional nonlinear diffusion equations [J].
Bonforte, Matteo ;
Luis Vazquez, Juan .
ADVANCES IN MATHEMATICS, 2014, 250 :242-284
[10]   Nonlinear Porous Medium Flow with Fractional Potential Pressure [J].
Caffarelli, Luis ;
Vazquez, Juan Luis .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 202 (02) :537-565