Crop Pests Prediction Method using Regression and Machine Learning Technology: Survey

被引:22
作者
Kim, Yun Hwan [1 ]
Yoo, Seong Joon [1 ]
Gu, Yeong Hyeon [1 ]
Lim, Jin Hee [2 ]
Han, Dongil [1 ]
Baik, Sung Wook [3 ]
机构
[1] Sejong Univ, Dept Comp Engn, 98 Gunja Dong Gwangjin Gu, Seoul 143747, South Korea
[2] Sejong Univ, Dept Bioresource Engn, Seoul 143747, South Korea
[3] Sejong Univ, Dept Digital Contents Engn, Seoul 143747, South Korea
来源
2013 INTERNATIONAL CONFERENCE ON FUTURE SOFTWARE ENGINEERING AND MULTIMEDIA ENGINEERING (ICFM 2013) | 2014年 / 6卷
关键词
Regression; Machine Learning Technology; SVM; FUSARIUM HEAD BLIGHT; DEOXYNIVALENOL CONTENT; NEURAL-NETWORK; MODEL;
D O I
10.1016/j.ieri.2014.03.009
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper describes current trends in the prediction of crop pests using machine learning technology. With the advent of data mining, the field of agriculture is also focused on it. Currently, various studies, domestic and overseas, are under progress using machine learning technology, and cases of its utilization are increasing. This paper classifies and introduces SVM (Support Vector Machine), Multiple Linear Regression, Neural Network, and Bayesian Network based techniques, and describes some cases of their utilization. (C) 2014. The Authors. Published by Elsevier B.V.
引用
收藏
页码:52 / 56
页数:5
相关论文
共 50 条
[41]   Tree crop yield estimation and prediction using remote sensing and machine learning: A systematic review [J].
Trentin, Carolina ;
Ampatzidis, Yiannis ;
Lacerda, Christian ;
Shiratsuchi, Luciano .
SMART AGRICULTURAL TECHNOLOGY, 2024, 9
[42]   Accurate Prediction of Microstructure of Composites using Machine Learning [J].
Sang, Sheng ;
Xu, Chen ;
Fan, Jiadi ;
Miao, Daniel ;
Side, Conner ;
Wang, Ziping .
ADVANCED THEORY AND SIMULATIONS, 2023, 6 (02)
[43]   Water quality prediction using machine learning methods [J].
Haghiabi, Amir Hamzeh ;
Nasrolahi, Ali Heidar ;
Parsaie, Abbas .
WATER QUALITY RESEARCH JOURNAL OF CANADA, 2018, 53 (01) :3-13
[44]   Machine learning regression and classification methods for fog events prediction [J].
Castillo-Boton, C. ;
Casillas-Perez, D. ;
Casanova-Mateo, C. ;
Ghimire, S. ;
Cerro-Prada, E. ;
Gutierrez, P. A. ;
Deo, R. C. ;
Salcedo-Sanz, S. .
ATMOSPHERIC RESEARCH, 2022, 272
[45]   A survey of machine learning techniques for food sales prediction [J].
Grigorios Tsoumakas .
Artificial Intelligence Review, 2019, 52 :441-447
[46]   Crime Prediction Methods Based on Machine Learning: A Survey [J].
Yin, Junxiang .
CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (02) :4601-4629
[47]   A Survey of Machine Learning Methods for Time Series Prediction [J].
Hall, Timothy ;
Rasheed, Khaled .
APPLIED SCIENCES-BASEL, 2025, 15 (11)
[48]   Visibility Prediction based on kilometric NWP Model Outputs using Machine-learning Regression [J].
Bari, Driss .
2018 IEEE 14TH INTERNATIONAL CONFERENCE ON E-SCIENCE (E-SCIENCE 2018), 2018, :278-282
[49]   Efficient Prediction of Low-Visibility Events at Airports Using Machine-Learning Regression [J].
Cornejo-Bueno, L. ;
Casanova-Mateo, C. ;
Sanz-Justo, J. ;
Cerro-Prada, E. ;
Salcedo-Sanz, S. .
BOUNDARY-LAYER METEOROLOGY, 2017, 165 (02) :349-370
[50]   Diabetes Prediction using Machine Learning [J].
Kharkwal, Tarun ;
Meena, Shweta .
INTERNATIONAL JOURNAL OF EARLY CHILDHOOD SPECIAL EDUCATION, 2022, 14 (02) :6999-7005