Crop Pests Prediction Method using Regression and Machine Learning Technology: Survey

被引:22
作者
Kim, Yun Hwan [1 ]
Yoo, Seong Joon [1 ]
Gu, Yeong Hyeon [1 ]
Lim, Jin Hee [2 ]
Han, Dongil [1 ]
Baik, Sung Wook [3 ]
机构
[1] Sejong Univ, Dept Comp Engn, 98 Gunja Dong Gwangjin Gu, Seoul 143747, South Korea
[2] Sejong Univ, Dept Bioresource Engn, Seoul 143747, South Korea
[3] Sejong Univ, Dept Digital Contents Engn, Seoul 143747, South Korea
来源
2013 INTERNATIONAL CONFERENCE ON FUTURE SOFTWARE ENGINEERING AND MULTIMEDIA ENGINEERING (ICFM 2013) | 2014年 / 6卷
关键词
Regression; Machine Learning Technology; SVM; FUSARIUM HEAD BLIGHT; DEOXYNIVALENOL CONTENT; NEURAL-NETWORK; MODEL;
D O I
10.1016/j.ieri.2014.03.009
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper describes current trends in the prediction of crop pests using machine learning technology. With the advent of data mining, the field of agriculture is also focused on it. Currently, various studies, domestic and overseas, are under progress using machine learning technology, and cases of its utilization are increasing. This paper classifies and introduces SVM (Support Vector Machine), Multiple Linear Regression, Neural Network, and Bayesian Network based techniques, and describes some cases of their utilization. (C) 2014. The Authors. Published by Elsevier B.V.
引用
收藏
页码:52 / 56
页数:5
相关论文
共 50 条
[31]   Sea Level Prediction Using Machine Learning [J].
Tur, Rifat ;
Tas, Erkin ;
Haghighi, Ali Torabi ;
Mehr, Ali Danandeh .
WATER, 2021, 13 (24)
[32]   Diabetes Prediction using Machine Learning Techniques [J].
Obulesu, O. ;
Suresh, K. ;
Ramudu, B. Venkata .
HELIX, 2020, 10 (02) :136-142
[33]   REVIEW OF CROP YIELD ESTIMATION USING MACHINE LEARNING AND DEEP LEARNING TECHNIQUES [J].
Modi, Anitha ;
Sharma, Priyanka ;
Saraswat, Deepti ;
Mehta, Rachana .
SCALABLE COMPUTING-PRACTICE AND EXPERIENCE, 2022, 23 (02) :59-80
[34]   Direct Shear Strength Prediction for Precast Concrete Joints Using the Machine Learning Method [J].
Liu, Tongxu ;
Wang, Zhen ;
Long, Zilin ;
Zeng, Junlin ;
Wang, Jingquan ;
Zhang, Jian .
JOURNAL OF BRIDGE ENGINEERING, 2022, 27 (05)
[35]   Machine Learning based Electrical Load Prediction using Regression Learners: A Performance Evaluation [J].
Wankhade, Sushama D. ;
Patil, Babasaheb R. .
2024 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT CYBER PHYSICAL SYSTEMS AND INTERNET OF THINGS, ICOICI 2024, 2024, :1595-1601
[36]   Prediction of preterm birth in multiparous women using logistic regression and machine learning approaches [J].
Belaghi, Reza Arabi .
SCIENTIFIC REPORTS, 2024, 14 (01)
[37]   Prediction of laser welding qualities of Al alloys using regression and machine learning techniques [J].
Kumar, Hemant ;
Chakravarty, Soumyabrata ;
Kuamr, Nitesh ;
Kumar, Nikhil .
MATERIALS RESEARCH EXPRESS, 2025, 12 (06)
[38]   Thrips incidence prediction in organic banana crop with Machine learning [J].
Manrique-Silupu, Jose ;
Campos, Jean C. ;
Paiva, Ernesto ;
Ipanaque, William .
HELIYON, 2021, 7 (12)
[39]   Crop Yield Prediction Using Hybrid Machine Learning Approach: A Case Study of Lentil (Lens culinaris Medik.) [J].
Das, Pankaj ;
Jha, Girish Kumar ;
Lama, Achal ;
Parsad, Rajender .
AGRICULTURE-BASEL, 2023, 13 (03)
[40]   Particle Breakage Prediction of Coral Sand Using Machine Learning Method [J].
Li, Xue ;
Zhou, Wan-Huan ;
Wang, Chao .
PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON TRANSPORTATION GEOTECHNICS, VOL 6, ICTG 2024, 2025, 407 :247-256