MINIMUM RANK WITH ZERO DIAGONAL

被引:0
作者
Grood, Cheryl [1 ]
Harmse, Johannes [2 ]
Hogben, Leslie [3 ,4 ]
Hunter, Thomas J. [1 ]
Jacob, Bonnie [5 ]
Klimas, Andrew [6 ]
McCathern, Sharon [2 ]
机构
[1] Swarthmore Coll, Dept Math & Stat, Swarthmore, PA 19081 USA
[2] Azusa Pacific Univ, Dept Math & Phys, Azusa, CA 92037 USA
[3] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[4] Amer Inst Math, Palo Alto, CA 94306 USA
[5] Rochester Inst Technol, Natl Tech Inst Deaf, Sci & Math Dept, Rochester, NY 14623 USA
[6] Xavier Univ Louisiana, Dept Math, New Orleans, LA 70125 USA
基金
美国国家科学基金会;
关键词
Zero-Diagonal; Minimum rank; Maximum nullity; Zero forcing number; Perfect [1,2]-factor; Spanning generalized cycle; Matrix; Graph;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Associated with a simple graph G is a family of real, symmetric zero diagonal matrices with the same nonzero pattern as the adjacency matrix of G. The minimum of the ranks of the matrices in this family is denoted mr(0)(G). We characterize all connected graphs G with extreme minimum zero-diagonal rank: a connected graph G has mr(0)(G) <= 3 if and only if it is a complete multipartite graph, and mr0(G) = vertical bar G vertical bar if and only if it has a unique spanning generalized cycle (also called a perfect vertical bar 1,2 vertical bar-factor). We present an algorithm for determining whether a graph has a unique spanning generalized cycle. In addition, we determine maximum zero-diagonal rank and show that for some graphs, not all ranks between minimum and maximum zero-diagonal ranks are allowed.
引用
收藏
页码:458 / 477
页数:20
相关论文
共 10 条
  • [1] Minimum rank of skew-symmetric matrices described by a graph
    Allison, Mary
    Bodine, Elizabeth
    DeAlba, Luz Maria
    Debnath, Joyati
    DeLoss, Laura
    Garnett, Colin
    Grout, Jason
    Hogben, Leslie
    Im, Bokhee
    Kim, Hana
    Nair, Reshmi
    Pryporova, Olga
    Savage, Kendrick
    Shader, Bryan
    Wehe, Amy Wangsness
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (10) : 2457 - 2472
  • [2] Zero forcing sets and the minimum rank of graphs
    Barioli, Francesco
    Barrett, Wayne
    Butler, Steve
    Cioaba, Sebastian M.
    Cvetkovic, Dragos
    Fallat, Shaun M.
    Godsil, Chris
    Haemers, Willem
    Hogben, Leslie
    Mikkelson, Rana
    Narayan, Sivaram
    Pryporova, Olga
    Sciriha, Irene
    So, Wasin
    Stevanovic, Dragan
    van der Holst, Hein
    Vander Meulen, Kevin N.
    Wehe, Amy Wangsness
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) : 1628 - 1648
  • [3] Minimum rank and maximum eigenvalue multiplicity of symmetric tree sign patterns
    DeAlba, Luz Maria
    Hardy, Timothy L.
    Hentzel, Irvin Roy
    Hogben, Leslie
    Wangsness, Amy
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 418 (2-3) : 394 - 415
  • [4] Fallat S., 2014, Handbook of Linear Algebra, V2nd
  • [5] The minimum rank of symmetric matrices described by a graph: A survey
    Fallat, Shaun M.
    Hogben, Leslie
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 426 (2-3) : 558 - 582
  • [6] DETERMINANT OF ADJACENCY MATRIX OF A GRAPH
    HARARY, F
    [J]. SIAM REVIEW, 1962, 4 (03) : 202 - &
  • [7] On unique k-factors and unique [1,k]-factors in graphs
    Hoffmann, A
    Volkmann, L
    [J]. DISCRETE MATHEMATICS, 2004, 278 (1-3) : 127 - 138
  • [8] Minimum rank problems
    Hogben, Leslie
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (08) : 1961 - 1974
  • [9] Merris Russell., 2001, WIL INT S D
  • [10] MIKKELSON R, 2008, THESIS IOWA STATE U